Alternate State Variables for Emerging Nanoelectronic Devices
暂无分享,去创建一个
Jae Young Lee | K.L. Wang | A. Khitun | K. Galatsis | Ki Wook Kim | William R. Dichtel | J.F. Stoddart | R. Ostroumov | W.R. Dichtel | E. Plummer | J.I. Zink | Ya-Hong Xie | J. F. Stoddart | J. Zink | K. W. Kim | K. Galatsis | R. Ostroumov | A. Khitun | Yahong Xie | A. Khitun | K. Wang | Kang L. Wang | W. Dichtel | Jae Young Lee | E. Plummer | J. Stoddart | Edward Plummer
[1] J. Zink,et al. Electrical or Photocontrol of the Rotary Motion of a Metallacarborane , 2004, Science.
[2] Dmitri E. Nikonov,et al. Power Dissipation in Spintronic Devices Out of Thermodynamic Equilibrium , 2006 .
[3] C. H. Back,et al. Applied physics: Speed limit ahead , 2004, Nature.
[4] H. Craighead,et al. Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.
[5] Dani Genossar. Intel Pentium M Processor Power Estimation, Budgeting, Optimization, and Validation , 2003 .
[6] Dieter Weller,et al. Fabrication and characterization of ordered FePt nanoparticles , 2003 .
[7] David J. Frank,et al. Power-constrained CMOS scaling limits , 2002, IBM J. Res. Dev..
[8] B. Chui,et al. Single spin detection by magnetic resonance force microscopy , 2004, Nature.
[9] R. Keyes. Power dissipation in information processing. , 1970, Science.
[10] W. Hafez,et al. Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistors (PHBTs) Experimentally Demonstrating fT = 765 GHz at 25°C Increasing to fT = 845 GHz at -55°C , 2006, 2006 International Electron Devices Meeting.
[11] R.W. Keyes,et al. Fundamental limits in digital information processing , 1981, Proceedings of the IEEE.
[12] R. Cowburn,et al. Room temperature magnetic quantum cellular automata , 2000, Science.
[13] L. Vandersypen,et al. Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.
[14] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[15] M. Kostylev,et al. Spin-wave logical gates , 2005 .
[16] R. Landauer,et al. Minimal energy dissipation in logic , 1970 .
[17] M. Breitwisch,et al. Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.
[18] Zhaohui Fan,et al. Modeling of crystallization activation energy for GeTe-Sb2Te3-based phase change materials , 2004, Optical Data Storage.
[19] H. A. M. van den Berg,et al. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping , 2002, Nature.
[20] E. Yablonovitch,et al. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor , 2004, Nature.
[21] Supriyo Datta,et al. Gating of a Molecular Transistor: Electrostatic and Conformational , 2002 .
[22] Jeffrey A. Davis,et al. The fundamental limit on binary switching energy for terascale integration (TSI) , 2000, IEEE Journal of Solid-State Circuits.
[23] Vincenzo Balzani,et al. Redox-controllable amphiphilic [2]rotaxanes. , 2004, Chemistry.
[24] Cyrus F. Hirjibehedin,et al. Spin Coupling in Engineered Atomic Structures , 2006, Science.
[25] R. Landauer. Computation: A Fundamental Physical View , 1987 .
[26] Konstantin K. Likharev,et al. Electronics Below 10 nm , 2003 .
[27] V. L. Gurevich,et al. HEAT GENERATION BY ELECTRIC CURRENT IN NANOSTRUCTURES , 1997 .
[28] A Imre,et al. Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.
[29] James R Heath,et al. Designing bistable [2]rotaxanes for molecular electronic devices , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[30] S. Parkin,et al. Magnetic Domain-Wall Racetrack Memory , 2008, Science.
[31] C. N. Lau,et al. Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.
[32] James M. Tour,et al. Molecular Electronics. Synthesis and Testing of Components , 2001 .
[33] William A. Goddard,et al. Meccano on the Nanoscale — A Blueprint for Making Some of the World′s Tiniest Machines , 2004 .
[34] Mark E. Welland,et al. Electronic spin detection in molecules using scanning-tunneling- microscopy-assisted electron-spin resonance , 2002 .
[35] T. M. Crawford,et al. Inductive measurement of ultrafast magnetization dynamics in thin-film Permalloy , 1999 .
[36] Kosmas Galatsis,et al. Nanoarchitectonics: Advances in Nanoelectronics , 2007 .
[37] C. L. Dennis,et al. High current gain silicon-based spin transistor , 2003 .
[38] D. Strukov,et al. CMOL: Devices, Circuits, and Architectures , 2006 .
[39] Hsian-Rong Tseng,et al. Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. , 2006, The journal of physical chemistry. B.
[40] Bonnie A. Sheriff,et al. A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.
[41] Tohru Yamamoto,et al. Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.
[42] James A. Hutchby,et al. Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.
[43] Kang L. Wang,et al. Electrical field control magnetic phase transition in nanostructured MnxGe1−x , 2007 .
[44] J.D. Meindl. A history of low power electronics: how it began and where it's headed , 1997, Proceedings of 1997 International Symposium on Low Power Electronics and Design.
[45] Wei-Qiao Deng,et al. Mechanism of the Stoddart-Heath bistable rotaxane molecular switch. , 2004, Journal of the American Chemical Society.
[46] R. Cavin,et al. Research directions and challenges in nanoelectronics , 2006 .
[47] O. Vaughan,et al. A chemically switchable molecular pinwheel. , 2006, Angewandte Chemie.
[48] R. Landauer,et al. Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..
[49] Supriyo Bandyopadhyay,et al. Arithmetic logic unit of a computer based on spin-polarised single electrons , 2007, IET Circuits Devices Syst..
[50] D. Nikonov,et al. Spin gain transistor in ferromagnetic semiconductors-the semiconductor Bloch-equations approach , 2003, IEEE Transactions on Nanotechnology.
[51] Kang L. Wang,et al. Nano-scale computational architectures with spin wave bus , 2005 .
[52] Kang L. Wang,et al. Variability of electronics and spintronics nanoscale devices , 2008 .
[53] Robert Joynt,et al. Rashba spin-orbit coupling and spin relaxation in silicon quantum wells , 2005 .
[54] Claude Fermon,et al. Spin waves propagation and confinement in conducting films at the micrometer scale , 2001 .
[55] Martijn H. R. Lankhorst,et al. Materials Issues in the Development of High Data-Transfer-Rate Phase-Change Compounds , 2001 .
[56] James D. Meindl,et al. Low power microelectronics: retrospect and prospect , 1995, Proc. IEEE.
[57] Yoshinori Tokura,et al. Correlated-electron physics in transition-metal oxides , 2003 .
[58] G. J. Parker,et al. Time-resolved measurement of propagating spin waves in ferromagnetic thin films. , 2002, Physical review letters.
[59] S. Datta,et al. Interacting systems for self-correcting low power switching , 2006, cond-mat/0611569.
[60] M. Lankhorst,et al. Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.
[61] D Petit,et al. Magnetic Domain-Wall Logic , 2005, Science.
[62] R Singh,et al. Fundamental device design considerations in the development of disruptive nanoelectronics. , 2002, Journal of nanoscience and nanotechnology.
[63] S. Selberherr,et al. An energy relaxation time model for device simulation , 1999 .
[64] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[65] Kang L. Wang,et al. On Power Dissipation in Information Processing , 2008, Fifth International Conference on Information Technology: New Generations (itng 2008).
[66] S. Majetich,et al. Magnetization directions of individual nanoparticles , 1999, Science.