Alternate State Variables for Emerging Nanoelectronic Devices

We provide an outlook of some important state variables for emerging nanoelectronic devices. State variables are physical representations of information used to perform information processing via memory and logic functionality. Advances in material science, emerging nanodevices, nanostructures, and architectures have provided hope that alternative state variables based on new mechanisms, nanomaterials, and nanodevices may indeed be plausible. We review and analyze the computational advantages that alternate state variables may possibly attain with respect to maximizing computational performance via minimum energy dissipation, maximum operating switching speed, and maximum device density.

[1]  J. Zink,et al.  Electrical or Photocontrol of the Rotary Motion of a Metallacarborane , 2004, Science.

[2]  Dmitri E. Nikonov,et al.  Power Dissipation in Spintronic Devices Out of Thermodynamic Equilibrium , 2006 .

[3]  C. H. Back,et al.  Applied physics: Speed limit ahead , 2004, Nature.

[4]  H. Craighead,et al.  Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.

[5]  Dani Genossar Intel Pentium M Processor Power Estimation, Budgeting, Optimization, and Validation , 2003 .

[6]  Dieter Weller,et al.  Fabrication and characterization of ordered FePt nanoparticles , 2003 .

[7]  David J. Frank,et al.  Power-constrained CMOS scaling limits , 2002, IBM J. Res. Dev..

[8]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[9]  R. Keyes Power dissipation in information processing. , 1970, Science.

[10]  W. Hafez,et al.  Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistors (PHBTs) Experimentally Demonstrating fT = 765 GHz at 25°C Increasing to fT = 845 GHz at -55°C , 2006, 2006 International Electron Devices Meeting.

[11]  R.W. Keyes,et al.  Fundamental limits in digital information processing , 1981, Proceedings of the IEEE.

[12]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[13]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[14]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[15]  M. Kostylev,et al.  Spin-wave logical gates , 2005 .

[16]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[17]  M. Breitwisch,et al.  Ultra-Thin Phase-Change Bridge Memory Device Using GeSb , 2006, 2006 International Electron Devices Meeting.

[18]  Zhaohui Fan,et al.  Modeling of crystallization activation energy for GeTe-Sb2Te3-based phase change materials , 2004, Optical Data Storage.

[19]  H. A. M. van den Berg,et al.  Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping , 2002, Nature.

[20]  E. Yablonovitch,et al.  Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor , 2004, Nature.

[21]  Supriyo Datta,et al.  Gating of a Molecular Transistor: Electrostatic and Conformational , 2002 .

[22]  Jeffrey A. Davis,et al.  The fundamental limit on binary switching energy for terascale integration (TSI) , 2000, IEEE Journal of Solid-State Circuits.

[23]  Vincenzo Balzani,et al.  Redox-controllable amphiphilic [2]rotaxanes. , 2004, Chemistry.

[24]  Cyrus F. Hirjibehedin,et al.  Spin Coupling in Engineered Atomic Structures , 2006, Science.

[25]  R. Landauer Computation: A Fundamental Physical View , 1987 .

[26]  Konstantin K. Likharev,et al.  Electronics Below 10 nm , 2003 .

[27]  V. L. Gurevich,et al.  HEAT GENERATION BY ELECTRIC CURRENT IN NANOSTRUCTURES , 1997 .

[28]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[29]  James R Heath,et al.  Designing bistable [2]rotaxanes for molecular electronic devices , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[31]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[32]  James M. Tour,et al.  Molecular Electronics. Synthesis and Testing of Components , 2001 .

[33]  William A. Goddard,et al.  Meccano on the Nanoscale — A Blueprint for Making Some of the World′s Tiniest Machines , 2004 .

[34]  Mark E. Welland,et al.  Electronic spin detection in molecules using scanning-tunneling- microscopy-assisted electron-spin resonance , 2002 .

[35]  T. M. Crawford,et al.  Inductive measurement of ultrafast magnetization dynamics in thin-film Permalloy , 1999 .

[36]  Kosmas Galatsis,et al.  Nanoarchitectonics: Advances in Nanoelectronics , 2007 .

[37]  C. L. Dennis,et al.  High current gain silicon-based spin transistor , 2003 .

[38]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[39]  Hsian-Rong Tseng,et al.  Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. , 2006, The journal of physical chemistry. B.

[40]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[41]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  James A. Hutchby,et al.  Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.

[43]  Kang L. Wang,et al.  Electrical field control magnetic phase transition in nanostructured MnxGe1−x , 2007 .

[44]  J.D. Meindl A history of low power electronics: how it began and where it's headed , 1997, Proceedings of 1997 International Symposium on Low Power Electronics and Design.

[45]  Wei-Qiao Deng,et al.  Mechanism of the Stoddart-Heath bistable rotaxane molecular switch. , 2004, Journal of the American Chemical Society.

[46]  R. Cavin,et al.  Research directions and challenges in nanoelectronics , 2006 .

[47]  O. Vaughan,et al.  A chemically switchable molecular pinwheel. , 2006, Angewandte Chemie.

[48]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[49]  Supriyo Bandyopadhyay,et al.  Arithmetic logic unit of a computer based on spin-polarised single electrons , 2007, IET Circuits Devices Syst..

[50]  D. Nikonov,et al.  Spin gain transistor in ferromagnetic semiconductors-the semiconductor Bloch-equations approach , 2003, IEEE Transactions on Nanotechnology.

[51]  Kang L. Wang,et al.  Nano-scale computational architectures with spin wave bus , 2005 .

[52]  Kang L. Wang,et al.  Variability of electronics and spintronics nanoscale devices , 2008 .

[53]  Robert Joynt,et al.  Rashba spin-orbit coupling and spin relaxation in silicon quantum wells , 2005 .

[54]  Claude Fermon,et al.  Spin waves propagation and confinement in conducting films at the micrometer scale , 2001 .

[55]  Martijn H. R. Lankhorst,et al.  Materials Issues in the Development of High Data-Transfer-Rate Phase-Change Compounds , 2001 .

[56]  James D. Meindl,et al.  Low power microelectronics: retrospect and prospect , 1995, Proc. IEEE.

[57]  Yoshinori Tokura,et al.  Correlated-electron physics in transition-metal oxides , 2003 .

[58]  G. J. Parker,et al.  Time-resolved measurement of propagating spin waves in ferromagnetic thin films. , 2002, Physical review letters.

[59]  S. Datta,et al.  Interacting systems for self-correcting low power switching , 2006, cond-mat/0611569.

[60]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[61]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[62]  R Singh,et al.  Fundamental device design considerations in the development of disruptive nanoelectronics. , 2002, Journal of nanoscience and nanotechnology.

[63]  S. Selberherr,et al.  An energy relaxation time model for device simulation , 1999 .

[64]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[65]  Kang L. Wang,et al.  On Power Dissipation in Information Processing , 2008, Fifth International Conference on Information Technology: New Generations (itng 2008).

[66]  S. Majetich,et al.  Magnetization directions of individual nanoparticles , 1999, Science.