Exploration and Inference in Spatial Extremes Using Empirical Basis Functions

Statistical methods for inference on spatial extremes of large datasets are yet to be developed. Motivated by standard dimension reduction techniques used in spatial statistics, we propose an approach based on empirical basis functions to explore and model spatial extremal dependence. Based on a low-rank max-stable model, we propose a data-driven approach to estimate meaningful basis functions using empirical pairwise extremal coefficients. These spatial empirical basis functions can be used to visualize the main trends in extremal dependence. In addition to exploratory analysis, we describe how these functions can be used in a Bayesian hierarchical model to model spatial extremes of large datasets. We illustrate our methods on extreme precipitations in eastern USA.Supplementary materials accompanying this paper appear online

[1]  A. Stephenson HIGH‐DIMENSIONAL PARAMETRIC MODELLING OF MULTIVARIATE EXTREME EVENTS , 2009 .

[2]  John P. Nolan,et al.  Dense classes of multivariate extreme value distributions , 2013, J. Multivar. Anal..

[3]  Anthony C. Davison,et al.  Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures , 2015, 1506.07836.

[4]  Raphael Huser,et al.  Space–time modelling of extreme events , 2012, 1201.3245.

[5]  Jonathan A. Tawn,et al.  A dependence measure for multivariate and spatial extreme values: Properties and inference , 2003 .

[6]  P. Naveau,et al.  Variograms for spatial max-stable random fields , 2006 .

[7]  Brian J Reich,et al.  A HIERARCHICAL MAX-STABLE SPATIAL MODEL FOR EXTREME PRECIPITATION. , 2013, The annals of applied statistics.

[8]  Daniel Cooley,et al.  A space‐time skew‐t model for threshold exceedances , 2017, Biometrics.

[9]  B. Shaby,et al.  Estimating Spatially Varying Severity Thresholds of a Forest Fire Danger Rating System Using Max-Stable Extreme-Event Modeling* , 2015 .

[10]  Jean Ponce,et al.  Sparse Modeling for Image and Vision Processing , 2014, Found. Trends Comput. Graph. Vis..

[11]  Johan Segers,et al.  A continuous updating weighted least squares estimator of tail dependence in high dimensions , 2016, Extremes.

[12]  B. Shaby,et al.  Bayesian spatial extreme value analysis to assess the changing risk of concurrent high temperatures across large portions of European cropland , 2012 .

[13]  J. Nolan,et al.  Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.

[14]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[15]  Laurens de Haan,et al.  Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.

[16]  Brian Everitt,et al.  Principal Components Analysis , 2005 .

[17]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[18]  Jun Yan,et al.  Extreme Value Modeling and Risk Analysis : Methods and Applications , 2015 .

[19]  J. Tawn,et al.  Efficient inference for spatial extreme value processes associated to log-Gaussian random functions , 2014 .

[20]  Mathieu Vrac,et al.  Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France , 2013 .

[21]  Thomas Opitz,et al.  Efficient inference and simulation for elliptical Pareto processes , 2013, 1401.0168.

[22]  Douglas W. Nychka,et al.  Tools for Spatial Data , 2016 .

[23]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[24]  M. Wehner Very extreme seasonal precipitation in the NARCCAP ensemble: model performance and projections , 2012, Climate Dynamics.

[25]  Anthony C. Davison,et al.  Threshold modeling of extreme spatial rainfall , 2013 .

[26]  B. Everitt,et al.  An Introduction to Applied Multivariate Analysis with R , 2011 .

[27]  A. Davison,et al.  Geostatistics of Dependent and Asymptotically Independent Extremes , 2013, Mathematical Geosciences.

[28]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[29]  Ian T. Jolliffe,et al.  Empirical orthogonal functions and related techniques in atmospheric science: A review , 2007 .

[30]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[31]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[32]  Yizao Wang,et al.  Conditional sampling for spectrally discrete max-stable random fields , 2010, Advances in Applied Probability.

[33]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[34]  Richard L. Smith,et al.  MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .

[35]  B. Shaby,et al.  A Hierarchical Model for Serially-Dependent Extremes: A Study of Heat Waves in the Western US , 2014 .

[36]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[37]  M. Schlather,et al.  Estimation of Hüsler–Reiss distributions and Brown–Resnick processes , 2012, 1207.6886.