Shape derivatives for minima of integral functionals
暂无分享,去创建一个
[1] J. Simon. Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] Mohamed Masmoudi,et al. Computation of high order derivatives in optimal shape design , 1994 .
[4] Marco Degiovanni,et al. On the Euler--Lagrange Equation for Functionals of the Calculus of Variations without Upper Growth Conditions , 2009, SIAM J. Control. Optim..
[5] M. Delfour,et al. Shape Analysis via Oriented Distance Functions , 1994 .
[6] 菊地 光嗣,et al. 書評 L.Ambrosio, N.Fusco and D.Pallara: Functions of Bounded Variation and Free Discontinuity Problems , 2002 .
[7] G. Bouchitté,et al. The calibration method for the Mumford-Shah functional and free-discontinuity problems , 2001, math/0105013.
[8] Menita Carozza,et al. Higher differentiability of minimizers of convex variational integrals , 2011 .
[9] Marc Dambrine,et al. About stability of equilibrium shapes , 2000 .
[10] Françoise Demengel,et al. Fonctions à hessien borné , 1984 .
[11] Gilles A. Francfort,et al. On conservation laws and necessary conditions in the calculus of variations , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[12] G. Anzellotti,et al. Pairings between measures and bounded functions and compensated compactness , 1983 .
[13] Gabrielle Demange,et al. Théorie des jeux , 2012 .
[14] M. HINTERMÜLLER,et al. Optimal Shape Design Subject to Elliptic Variational Inequalities , 2011, SIAM J. Control. Optim..
[15] I. Fonseca,et al. Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .
[16] F. Murat,et al. Sur le controle par un domaine géométrique , 1976 .
[17] Arian Novruzi,et al. Structure of shape derivatives , 2002 .
[18] Hermano Frid,et al. Extended Divergence-Measure Fields and the Euler Equations for Gas Dynamics , 2003 .
[19] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[20] Roger J.-B. Wets,et al. Convergence of convex-concave saddle functions: applications to convex programming and mechanics , 1988 .
[21] L. Ambrosio,et al. Traces and fine properties of a BD class of vector fields and applications , 2005 .
[22] W. Gangbo,et al. Local invertibility of Sobolev functions , 1995 .
[23] G. Bouchitté. Convex Analysis and Duality Methods , 2006 .
[24] Menahem Schiffer,et al. Hadamard's Formula and Variation of Domain-Functions , 1946 .
[25] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[26] L. Evans. Measure theory and fine properties of functions , 1992 .
[27] A. Fiaschi,et al. The Bounded Slope Condition for Functionals Depending on x, u, and ∇ , 2012, SIAM J. Control. Optim..
[28] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[29] Dorin Bucur,et al. Anatomy of the shape Hessian via lie brackets , 1997 .
[30] Jean-Paul Zolésio,et al. Optimization of the domain in elliptic variational inequalities , 1988 .
[31] U. Mosco. Convergence of convex sets and of solutions of variational inequalities , 1969 .
[32] Guillaume Philippe. Intrinsic expression of the derivatives in domain optimization problems , 1996 .
[33] Antoine Henrot,et al. Variation et optimisation de formes : une analyse géométrique , 2005 .
[34] Frank H. Clarke. Multiple integrals of Lipschitz functions in the calculus of variations , 1977 .
[35] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[37] Menahem Schiffer,et al. Convexity of domain functionals , 1952 .
[38] Guy Bouchitté,et al. A nonstandard free boundary problem arising in the shape optimization of thin torsion rods , 2013 .
[39] Carlo Mariconda,et al. Lipschitz regularity for minima without strict convexity of the Lagrangian , 2007 .
[40] Gianni Dal Maso,et al. An Introduction to [gamma]-convergence , 1993 .
[41] I. Ekeland. Convexity Methods In Hamiltonian Mechanics , 1990 .
[42] Otto T. Bruhns,et al. Stability of Equilibrium , 2003 .
[43] Giuseppe Mingione,et al. Regularity of minima: An invitation to the dark side of the calculus of variations , 2006 .
[44] Arrigo Cellina. On the Bounded Slope Condition and the Validity of the Euler Lagrange Equation , 2002, SIAM J. Control. Optim..
[45] Marco Mazzola,et al. The validity of the Euler–Lagrange equation for solutions to variational problems , 2012, Journal of Fixed Point Theory and Applications.
[46] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[47] M. Delfour,et al. Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .
[48] Ronald F. Gariepy. FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .
[49] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[50] Arrigo Cellina,et al. Higher differentiability of solutions to variational problems , 2012 .
[51] Bernard Dacorogna. Introduction au calcul des variations , 1992 .
[52] Pierre Seppecher,et al. Optimal Thin Torsion Rods and Cheeger Sets , 2012, SIAM J. Math. Anal..