Shape derivatives for minima of integral functionals

For $$\Omega $$Ω varying among open bounded sets in $$\mathbb R ^n$$Rn, we consider shape functionals $$J (\Omega )$$J(Ω) defined as the infimum over a Sobolev space of an integral energy of the kind $$\int _\Omega [ f (\nabla u) + g (u) ]$$∫Ω[f(∇u)+g(u)], under Dirichlet or Neumann conditions on $$\partial \Omega $$∂Ω. Under fairly weak assumptions on the integrands $$f$$f and $$g$$g, we prove that, when a given domain $$\Omega $$Ω is deformed into a one-parameter family of domains $$\Omega _\varepsilon $$Ωε through an initial velocity field $$V\in W ^ {1, \infty } (\mathbb R ^n, \mathbb R ^n)$$V∈W1,∞(Rn,Rn), the corresponding shape derivative of $$J$$J at $$\Omega $$Ω in the direction of $$V$$V exists. Under some further regularity assumptions, we show that the shape derivative can be represented as a boundary integral depending linearly on the normal component of $$V$$V on $$\partial \Omega $$∂Ω. Our approach to obtain the shape derivative is new, and it is based on the joint use of Convex Analysis and Gamma-convergence techniques. It allows to deduce, as a companion result, optimality conditions in the form of conservation laws.

[1]  J. Simon Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Mohamed Masmoudi,et al.  Computation of high order derivatives in optimal shape design , 1994 .

[4]  Marco Degiovanni,et al.  On the Euler--Lagrange Equation for Functionals of the Calculus of Variations without Upper Growth Conditions , 2009, SIAM J. Control. Optim..

[5]  M. Delfour,et al.  Shape Analysis via Oriented Distance Functions , 1994 .

[6]  菊地 光嗣,et al.  書評 L.Ambrosio, N.Fusco and D.Pallara: Functions of Bounded Variation and Free Discontinuity Problems , 2002 .

[7]  G. Bouchitté,et al.  The calibration method for the Mumford-Shah functional and free-discontinuity problems , 2001, math/0105013.

[8]  Menita Carozza,et al.  Higher differentiability of minimizers of convex variational integrals , 2011 .

[9]  Marc Dambrine,et al.  About stability of equilibrium shapes , 2000 .

[10]  Françoise Demengel,et al.  Fonctions à hessien borné , 1984 .

[11]  Gilles A. Francfort,et al.  On conservation laws and necessary conditions in the calculus of variations , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  G. Anzellotti,et al.  Pairings between measures and bounded functions and compensated compactness , 1983 .

[13]  Gabrielle Demange,et al.  Théorie des jeux , 2012 .

[14]  M. HINTERMÜLLER,et al.  Optimal Shape Design Subject to Elliptic Variational Inequalities , 2011, SIAM J. Control. Optim..

[15]  I. Fonseca,et al.  Modern Methods in the Calculus of Variations: L^p Spaces , 2007 .

[16]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[17]  Arian Novruzi,et al.  Structure of shape derivatives , 2002 .

[18]  Hermano Frid,et al.  Extended Divergence-Measure Fields and the Euler Equations for Gas Dynamics , 2003 .

[19]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[20]  Roger J.-B. Wets,et al.  Convergence of convex-concave saddle functions: applications to convex programming and mechanics , 1988 .

[21]  L. Ambrosio,et al.  Traces and fine properties of a BD class of vector fields and applications , 2005 .

[22]  W. Gangbo,et al.  Local invertibility of Sobolev functions , 1995 .

[23]  G. Bouchitté Convex Analysis and Duality Methods , 2006 .

[24]  Menahem Schiffer,et al.  Hadamard's Formula and Variation of Domain-Functions , 1946 .

[25]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[26]  L. Evans Measure theory and fine properties of functions , 1992 .

[27]  A. Fiaschi,et al.  The Bounded Slope Condition for Functionals Depending on x, u, and ∇ , 2012, SIAM J. Control. Optim..

[28]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[29]  Dorin Bucur,et al.  Anatomy of the shape Hessian via lie brackets , 1997 .

[30]  Jean-Paul Zolésio,et al.  Optimization of the domain in elliptic variational inequalities , 1988 .

[31]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[32]  Guillaume Philippe Intrinsic expression of the derivatives in domain optimization problems , 1996 .

[33]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[34]  Frank H. Clarke Multiple integrals of Lipschitz functions in the calculus of variations , 1977 .

[35]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[37]  Menahem Schiffer,et al.  Convexity of domain functionals , 1952 .

[38]  Guy Bouchitté,et al.  A nonstandard free boundary problem arising in the shape optimization of thin torsion rods , 2013 .

[39]  Carlo Mariconda,et al.  Lipschitz regularity for minima without strict convexity of the Lagrangian , 2007 .

[40]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[41]  I. Ekeland Convexity Methods In Hamiltonian Mechanics , 1990 .

[42]  Otto T. Bruhns,et al.  Stability of Equilibrium , 2003 .

[43]  Giuseppe Mingione,et al.  Regularity of minima: An invitation to the dark side of the calculus of variations , 2006 .

[44]  Arrigo Cellina On the Bounded Slope Condition and the Validity of the Euler Lagrange Equation , 2002, SIAM J. Control. Optim..

[45]  Marco Mazzola,et al.  The validity of the Euler–Lagrange equation for solutions to variational problems , 2012, Journal of Fixed Point Theory and Applications.

[46]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[47]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[48]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[49]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[50]  Arrigo Cellina,et al.  Higher differentiability of solutions to variational problems , 2012 .

[51]  Bernard Dacorogna Introduction au calcul des variations , 1992 .

[52]  Pierre Seppecher,et al.  Optimal Thin Torsion Rods and Cheeger Sets , 2012, SIAM J. Math. Anal..