Magnetization of sinking porous diapirs in planetesimal cores

[1]  D. Bercovici,et al.  Two-phase magnetohydrodynamics: Theory and applications to planetesimal cores , 2020 .

[2]  C. Russell,et al.  Observations, Meteorites, and Models: A Preflight Assessment of the Composition and Formation of (16) Psyche , 2020, Journal of geophysical research. Planets.

[3]  F. Nimmo,et al.  The Top‐Down Solidification of Iron Asteroids Driving Dynamo Evolution , 2019, Journal of geophysical research. Planets.

[4]  T. Spohn,et al.  Top-down freezing in a Fe–FeS core and Ganymede’s present-day magnetic field , 2018, Icarus.

[5]  R. Harrison,et al.  Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid , 2017 .

[6]  R. Harrison,et al.  Magnetic Mineralogy of Meteoritic Metal: Paleomagnetic Evidencefor Dynamo Activity on Differentiated Planetesimals , 2017 .

[7]  H. Terasaki Physical Properties of the Outer Core , 2016 .

[8]  D. Bercovici,et al.  Core solidification and dynamo evolution in a mantle‐stripped planetesimal , 2016 .

[9]  T. Spohn,et al.  Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons , 2015, Progress in Earth and Planetary Science.

[10]  T. Spohn,et al.  The Fe snow regime in Ganymede's core: A deep‐seated dynamo below a stable snow zone , 2015 .

[11]  E. A. Lima,et al.  Decline of the lunar core dynamo , 2014 .

[12]  Linda T. Elkins-Tanton,et al.  Differentiated Planetesimals and the Parent Bodies of Chondrites , 2013 .

[13]  J. Head,et al.  Persistence and origin of the lunar core dynamo , 2013, Proceedings of the National Academy of Sciences.

[14]  R. Secco Viscosity of the Outer Core , 2013 .

[15]  Q. Williams Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores , 2009 .

[16]  F. Nimmo Energetics of asteroid dynamos and the role of compositional convection , 2009 .

[17]  E. A. Lima,et al.  Magnetism on the Angrite Parent Body and the Early Differentiation of Planetesimals , 2008, Science.

[18]  T. Alboussière,et al.  On the existence and structure of a mush at the inner core boundary of the Earth , 2007, 0801.2897.

[19]  S. Hauck,,et al.  Sulfur's impact on core evolution and magnetic field generation on Ganymede , 2005 .

[20]  J. Goff Heuristic model of air drag on a sphere , 2004 .

[21]  M. Kivelson,et al.  The Permanent and Inductive Magnetic Moments of Ganymede , 2002 .

[22]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[23]  Ulrich R. Christensen,et al.  Numerical modelling of the geodynamo: a systematic parameter study , 1999 .

[24]  M. Manga Interactions between mantle diapirs , 1997 .

[25]  D. J. Southwood,et al.  Discovery of Ganymede's magnetic field by the Galileo spacecraft , 1996, Nature.

[26]  Rainer Hollerbach ON THE THEORY OF THE GEODYNAMO , 1996 .

[27]  M. Manga Waves of bubbles in basaltic magmas and lavas , 1996 .

[28]  H. Power,et al.  Integral-equation solution of potential flow past a porous body of arbitrary shape , 1984, Journal of Fluid Mechanics.

[29]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[30]  Richard Van Blerkom Magnetohydrodynamic flow of a viscous fluid past a sphere , 1960, Journal of Fluid Mechanics.

[31]  I. Sumita,et al.  Inner core dynamics , 2022, Earth's Core.

[32]  Linda T. Elkins-Tanton,et al.  Magnetic fields on asteroids and planetesimals , 2017 .

[33]  J. Crowley,et al.  Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos , 2013 .

[34]  M. Grae Worster,et al.  CONVECTION IN MUSHY LAYERS , 1997 .

[35]  Raymond A. Serway,et al.  Printed test bank to accompany Physics for scientists and engineers with modern physics , 1982 .