Combining Theory and Experiment for Multitechnique Characterization of Activated CO2 on Transition Metal Carbide (001) Surfaces

Early transition metal carbides (TMC; TM = Ti, Zr, Hf, V, Nb, Ta, Mo) with face-centered cubic crystallographic structure have emerged as promising materials for CO2 capture and activation. Density functional theory (DFT) calculations using the Perdew–Burke–Ernzerhof exchange–correlation functional evidence charge transfer from the TMC surface to CO2 on the two possible adsorption sites, namely, MMC and TopC, and the electronic structure and binding strength differences are discussed. Further, the suitability of multiple experimental techniques with respect to (1) adsorbed CO2 recognition and (2) MMC/TopC adsorption distinction is assessed from extensive DFT simulations. Results show that ultraviolet photoemission spectroscopies (UPS), work function changes, core level X-ray photoemission spectroscopy (XPS), and changes in linear optical properties could well allow for adsorbed CO2 detection. Only infrared (IR) spectra and scanning tunnelling microscopy (STM) seem to additionally allow for MMC/TopC adsorp...

[1]  F. Illas,et al.  Effective and Highly Selective CO Generation from CO2 Using a Polycrystalline α-Mo2C Catalyst , 2017 .

[2]  J. Baltrusaitis,et al.  Surface chemistry of carbon dioxide revisited , 2016 .

[3]  U. Diebold,et al.  A multi-technique study of CO2 adsorption on Fe3O4 magnetite. , 2016, The Journal of chemical physics.

[4]  Yong Yang,et al.  Activation mechanisms of H2, O2, H2O, CO2, CO, CH4 and C2Hx on metallic Mo2C(001) as well as Mo/C terminated Mo2C(101) from density functional theory computations , 2016 .

[5]  F. Illas,et al.  Transition metal carbides as novel materials for CO2 capture, storage, and activation , 2016 .

[6]  W. Schmidt,et al.  Water adsorbate influence on the Cu(110) surface optical response , 2015 .

[7]  U. Diebold,et al.  A Multitechnique Study of CO Adsorption on the TiO2 Anatase (101) Surface , 2015 .

[8]  H. Freund,et al.  Molecular Adsorption Changes the Quantum Structure of Oxide-Supported Gold Nanoparticles: Chemisorption versus Physisorption. , 2015, Physical review letters.

[9]  Ping Liu,et al.  Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. , 2015, Chemical communications.

[10]  F. Illas,et al.  Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO2 and H2 , 2015, Topics in Catalysis.

[11]  G. Spoto,et al.  CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study , 2014 .

[12]  F. Illas,et al.  The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[13]  Jingguang G. Chen,et al.  Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. , 2014, Angewandte Chemie.

[14]  U. Burghaus Surface chemistry of CO2 – Adsorption of carbon dioxide on clean surfaces at ultrahigh vacuum , 2014 .

[15]  Martin L. Green,et al.  Measurement, standards, and data needs for CO2 capture materials: a critical review. , 2013, Environmental science & technology.

[16]  B. D. Kay,et al.  Structure and dynamics of CO2 on rutile TiO2(110)- 1×1 , 2012 .

[17]  Ping Liu,et al.  CO2 Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts. , 2012, The journal of physical chemistry letters.

[18]  J. Ho,et al.  Adsorption, Dissociation, and Hydrogenation of CO2 on WC(0001) and WC-Co Alloy Surfaces Investigated with Theoretical Calculations , 2012 .

[19]  A. Baldereschi,et al.  Imaging and characterization of activated CO2 species on Ni(110) , 2010 .

[20]  B. Smit,et al.  Carbon dioxide capture: prospects for new materials. , 2010, Angewandte Chemie.

[21]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[22]  U. Burghaus Surface science perspective of carbon dioxide chemistry—Adsorption kinetics and dynamics of CO2 on selected model surfaces , 2009 .

[23]  T. Imada,et al.  Photoemission and quantum chemical study of SrTiO 3 (001) surfaces and their interaction with CO 2 , 2008 .

[24]  F. Illas,et al.  Evidence for spontaneous CO2 activation on cobalt surfaces , 2008 .

[25]  G. Kresse,et al.  Ab initioreflectance difference spectra of the bare and adsorbate covered Cu(110) surfaces , 2007 .

[26]  B. Meyer,et al.  CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. , 2007, Angewandte Chemie.

[27]  O. Løvvik,et al.  Comparison of theoretical and experimental dielectric functions : Electron energy-loss spectroscopy and density-functional calculations on skutterudites , 2006 .

[28]  Jianguo Wang,et al.  Density functional theory study into the adsorption of CO2, H and CHx (x = 0-3) as well as C2H4 on α-Mo2C(0001) , 2006 .

[29]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[30]  F. Illas,et al.  The interaction of CO2 with sodium-promoted W(011). , 2005, Physical chemistry chemical physics : PCCP.

[31]  F. Illas,et al.  Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies , 2005 .

[32]  F. Voigts,et al.  Interaction of O2, CO and CO2 with Co films , 2005 .

[33]  F. Illas,et al.  A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. , 2005, The Journal of chemical physics.

[34]  F. Illas,et al.  Chemisorption of atomic chlorine on metal surfaces and the interpretation of the induced work function changes , 2005 .

[35]  K. Nakamura,et al.  The interaction of oxygen with TiC(001): photoemission and first-principles studies. , 2004, The Journal of chemical physics.

[36]  Rasmita Raval,et al.  From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni(110). , 2002, Journal of the American Chemical Society.

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  R. Davis,et al.  Scanning tunneling microscopy studies of niobium carbide (100) and (110) surfaces , 1996 .

[41]  P. Blöchl Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[42]  Johansson,et al.  Surface-shifted N 1s and C 1s levels on the (100) surface of TiN and TiC. , 1993, Physical review. B, Condensed matter.

[43]  Johansson,et al.  High-resolution core-level study of ZrC(100) and its reaction with oxygen. , 1993, Physical review. B, Condensed matter.

[44]  D. Dwyer,et al.  Sequential carbon oxygen bond cleavage in chemisorption of CO2 on Fe(100) , 1993 .

[45]  Johansson,et al.  High-resolution core-level studies of VC0.80 surfaces. , 1993, Physical review. B, Condensed matter.

[46]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[47]  Miyahara,et al.  Optical study of the stoichiometry-dependent electronic structure of TiCx, VCx, and NbCx. , 1990, Physical review. B, Condensed matter.

[48]  D. Bonnell Characterization of carbides by scanning tunneling microscopy , 1988 .

[49]  H. Freund,et al.  Photoemission of molecular adsorbates , 1988 .

[50]  G. Wedler,et al.  Interaction of carbon dioxide with Fe(110), stepped Fe(100) and Fe(111) , 1986 .

[51]  F. Escudero,et al.  Atoms in molecules , 1982 .

[52]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[53]  M. Boudart,et al.  Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis , 1973, Science.

[54]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[55]  B. Sanyal Optical Properties of Materials Calculated from First Principles Theory , 2010 .

[56]  X. Dinga,et al.  Interaction of carbon dioxide with Ni ( 110 ) : a combined experimental and theoretical study , 2008 .

[57]  Jingguang G. Chen,et al.  Surface chemistry of transition metal carbides. , 2005, Chemical reviews.

[58]  M. Patrini,et al.  Optical Properties of Materials , 2005 .

[59]  M. Braic,et al.  Surface chemistry of plasma deposited ZrC hard coatings , 2005 .

[60]  H. Freund,et al.  CO, ADSORPTION AND REACTION ON Fe(ll1): AN ANGLE RESOLVED PHOTOEMISSION (ARUPS) STUDY , 2002 .

[61]  M. W. Roberts,et al.  Surface chemistry of carbon dioxide , 1996 .

[62]  H. Freund,et al.  Adsorption and reaction of CO2 and CO2/O CO-adsorption on Ni(110): Angle resolved photoemission (ARUPS) and electron energy loss (HREELS) studies , 1987 .