A Polygon and Point-Based Approach to Matching Geospatial Features

A methodology for matching bidimensional entities is presented in this paper. The matching is proposed for both area and point features extracted from geographical databases. The procedure used to obtain homologous entities is achieved in a two-step process: The first matching, polygon to polygon matching (inter-element matching), is obtained by means of a genetic algorithm that allows the classifying of area features from two geographical databases. After this, we apply a point to point matching (intra-element matching) based on the comparison of changes in their turning functions. This study shows that genetic algorithms are suitable for matching polygon features even if these features are quite different. Our results show up to 40% of matched polygons with differences in geometrical attributes. With regards to point matching, the vertex from homologous polygons, the function and threshold values proposed in this paper show a useful method for obtaining precise vertex matching.

[1]  Thomas Devogele,et al.  Matching Networks with Different Levels of Detail , 2008, GeoInformatica.

[2]  Enrique Alba,et al.  Cellular genetic algorithms , 2014, GECCO.

[3]  L. Zhilin,et al.  Extended Hausdorff distance for spatial objects in GIS , 2007 .

[4]  Tinghua Ai,et al.  Pattern classification approaches to matching building polygons at multiple scales , 2012 .

[5]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[6]  Claire Ellul,et al.  Assessing Data Completeness of VGI through an Automated Matching Procedure for Linear Data , 2012, Trans. GIS.

[7]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[8]  Thomas Devogele,et al.  Building a Multi-Scale Database with Scale-Transition Relationships , 2005 .

[9]  Francisco Javier Ariza-López,et al.  Automatic positional accuracy assessment of geospatial databases using line-based methods , 2013 .

[10]  Jieqing Feng,et al.  2D shape morphing via automatic feature matching and hierarchical interpolation , 2009, Comput. Graph..

[11]  Jianmin Jiang,et al.  A spectral-multiplicity-tolerant approach to robust graph matching , 2013, Pattern Recognit..

[12]  Bo Jiang,et al.  Graph matching based on spectral embedding with missing value , 2012, Pattern Recognit..

[13]  Alan David Atkinson Gordo,et al.  Variability of NSSDA Estimations , 2008 .

[14]  Francisco Javier Ariza-López,et al.  Digital map conflation: a review of the process and a proposal for classification , 2011, Int. J. Geogr. Inf. Sci..

[15]  Demin Xiong,et al.  Semiautomated matching for network database integration , 2004 .

[16]  Chang-Hsing Lee,et al.  A new 3D model retrieval approach based on the elevation descriptor , 2007, Pattern Recognit..

[17]  James M. Keller,et al.  Relaxation-Based Point Feature Matching for Vector Map Conflation , 2011, Trans. GIS.

[18]  Surya Prakash,et al.  Geometric graph comparison from an alignment viewpoint , 2012, Pattern Recognit..

[19]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[20]  Kiyun Yu,et al.  A new method for matching objects in two different geospatial datasets based on the geographic context , 2010, Comput. Geosci..

[21]  Tibério S. Caetano,et al.  Fast matching of large point sets under occlusions , 2012, Pattern Recognit..

[22]  Dietmar Saupe,et al.  Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics , 2001, 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No.01TH8564).

[23]  K. W. Wong,et al.  Automatic matching of buildings and corners , 1999 .

[24]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[25]  Volker Walter,et al.  Matching spatial data sets: a statistical approach , 1999, Int. J. Geogr. Inf. Sci..

[26]  Guoshan Zhang,et al.  A Genetic Algorithm Based on a New Real Coding Approach , 2012, 2012 Second International Conference on Intelligent System Design and Engineering Application.

[27]  Francisco Javier Ariza-López,et al.  A Survey of Measures and Methods for Matching Geospatial Vector Datasets , 2016, ACM Comput. Surv..

[28]  Remco C. Veltkamp,et al.  Shape Similarity Measures, Properties and Constructions , 2000, VISUAL.

[29]  A. E. Eiben,et al.  Parameter Control Methods for Selection Operators in Genetic Algorithms , 2008, PPSN.

[30]  Perry J. Hardin,et al.  Statistical Significance and Normalized Confusion Matrices , 1997 .

[31]  Anne Ruas,et al.  Knowledge formalization for vector data matching using belief theory , 2015, J. Spatial Inf. Sci..

[32]  MICHAEL F. GOODCHILD,et al.  A Simple Positional Accuracy Measure for Linear Features , 1997, Int. J. Geogr. Inf. Sci..

[33]  Wanqing Li,et al.  A novel shape-based non-redundant local binary pattern descriptor for object detection , 2013, Pattern Recognit..

[34]  Francisco Herrera,et al.  Hybrid crossover operators with multiple descendents for real‐coded genetic algorithms: Combining neighborhood‐based crossover operators , 2009, Int. J. Intell. Syst..

[35]  Pascal Neis,et al.  Quality assessment for building footprints data on OpenStreetMap , 2014, Int. J. Geogr. Inf. Sci..

[36]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[37]  Monika Sester,et al.  SEMANTIC AND GEOMETRIC INTEGRATION OF GEOSCIENTIFIC DATA SETS WITH ATKIS – APPLIED TO GEO-OBJECTS FROM GEOLOGY AND SOIL SCIENCE , 2003 .

[38]  Kiyun Yu,et al.  Detecting conjugate-point pairs for map alignment between two polygon datasets , 2011, Comput. Environ. Urban Syst..

[39]  Ashok Samal,et al.  A feature-based approach to conflation of geospatial sources , 2004, Int. J. Geogr. Inf. Sci..

[40]  Wenzhong Shi,et al.  Line segment confidence region-based string matching method for map conflation , 2013 .

[41]  Wenzhong Shi,et al.  A probability-based multi-measure feature matching method in map conflation , 2009 .

[42]  P. R. T. Newby QUALITY MANAGEMENT FOR SURVEYING, PHOTOGRAMMETRY and DIGITAL MAPPING AT THE ORDNANCE SURVEY† , 2006 .

[43]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[44]  Francisco Herrera,et al.  A taxonomy for the crossover operator for real‐coded genetic algorithms: An experimental study , 2003, Int. J. Intell. Syst..

[45]  Meng Zhang,et al.  An iterative road-matching approach for the integration of postal data , 2007, Comput. Environ. Urban Syst..

[46]  Soe-tsyr Yuan,et al.  Development of Conflation Components , 1999 .

[47]  M. Goodchild,et al.  An optimisation model for linear feature matching in geographical data conflation , 2011 .

[48]  Meng Zhang,et al.  Methods and Implementations of Road-Network Matching , 2009 .

[49]  Bisheng Yang,et al.  A probabilistic relaxation approach for matching road networks , 2013, Int. J. Geogr. Inf. Sci..

[50]  Juan José Ruiz Lendínez Automatización del control de calidad posicional de la cartografía , 2012 .

[51]  Zhilin Li,et al.  Effects of check points on the reliability of DTM accuracy estimates obtained from experimental tests , 1991 .

[52]  Edwin R. Hancock,et al.  Least-commitment graph matching with genetic algorithms , 2001, Pattern Recognit..

[53]  María Luisa Casado Some Basic Mathematical Constraints for the Geometric Conflation Problem , 2006 .

[54]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[55]  J. J. Ruiz-Lendínez,et al.  A point-based methodology for the automatic positional accuracy assessment of geospatial databases , 2016 .

[56]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[57]  Kaisa Miettinen,et al.  On initial populations of a genetic algorithm for continuous optimization problems , 2007, J. Glob. Optim..

[58]  Christopher B. Jones,et al.  A Probabilistic Approach to Environmental Change Detection with Area-Class Map Data , 1999, Integrated Spatial Databases.

[59]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[60]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[61]  Esther M. Arkin,et al.  An efficiently computable metric for comparing polygonal shapes , 1991, SODA '90.

[62]  Min Deng,et al.  Extended Hausdorff distance for spatial objects in GIS , 2007, Int. J. Geogr. Inf. Sci..

[63]  Kiyun Yu,et al.  Automatic Change Detection Based on Areal Feature Matching in Different Network Data-sets , 2013 .

[64]  Chun-Liang Lin,et al.  Chapter 8 Structure-Specified Real Coded Genetic Algorithms with Applications , 2010 .

[65]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[66]  Anne Brindle,et al.  Genetic algorithms for function optimization , 1980 .

[67]  Alan-David-James Atkinson-Gordo Control de calidad posicional en cartografía : análisis de los principales estándares y propuesta de mejora , 2013 .

[68]  Christian Heipke,et al.  Integration of heterogeneous geospatial data in a federated database , 2007 .

[69]  Serkan Kaygin,et al.  Shape recognition using attributed string matching with polygon vertices as the primitives , 2002, Pattern Recognit. Lett..

[70]  Gill Barequet,et al.  Blending polygonal shapes with different topologies , 2001, Comput. Graph..

[71]  Catriel Beeri,et al.  Location‐based algorithms for finding sets of corresponding objects over several geo‐spatial data sets , 2010, Int. J. Geogr. Inf. Sci..

[72]  Michela Spagnuolo,et al.  Similarity measures for blending polygonal shapes , 2001, Comput. Graph..

[73]  Tsuhan Chen,et al.  Efficient feature extraction for 2D/3D objects in mesh representation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[74]  J. T. Hastings,et al.  Automated conflation of digital gazetteer data , 2008, Int. J. Geogr. Inf. Sci..