TAR DNA-binding protein 43 in neurodegenerative disease

In 2006, TAR DNA-binding protein 43 (TDP-43), a highly conserved nuclear protein, was identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and in the most common variant of frontotemporal lobar degeneration (FTLD), FTLD-U, which is characterized by cytoplasmic inclusions that stain positive for ubiquitin but negative for tau and α-synuclein. Since then, rapid advances have been made in our understanding of the physiological function of TDP-43 and the role of this protein in neurodegeneration. These advances link ALS and FTLD-U (now designated FTLD-TDP) to a shared mechanism of disease. In this Review, we summarize the current evidence regarding the normal function of TDP-43 and the TDP-43 pathology observed in FTLD-TDP, ALS, and other neurodegenerative diseases wherein TDP-43 pathology co-occurs with other disease-specific lesions (for example, with amyloid plaques and neurofibrillary tangles in Alzheimer disease). Moreover, we discuss the accumulating data that support our view that FTLD-TDP and ALS represent two ends of a spectrum of primary TDP-43 proteinopathies. Finally, we comment on the importance of recent advances in TDP-43-related research to neurological practice, including the new opportunities to develop better diagnostics and disease-modifying therapies for ALS, FTLD-TDP, and related disorders exhibiting TDP-43 pathology.

[1]  J. Taylor,et al.  Valosin-containing protein and the pathogenesis of frontotemporal dementia associated with inclusion body myopathy , 2007, Acta Neuropathologica.

[2]  S. Greenberg,et al.  Nuclear localization of valosin‐containing protein in normal muscle and muscle affected by inclusion‐body myositis , 2007, Muscle & nerve.

[3]  E. Buratti,et al.  Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene , 2005, Nucleic acids research.

[4]  Hurng‐Yi Wang,et al.  Structural diversity and functional implications of the eukaryotic TDP gene family. , 2004, Genomics.

[5]  S. Reske,et al.  Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD , 2005, Annals of neurology.

[6]  A. Hillis,et al.  Frontotemporal degeneration, Pick's disease, Pick complex, and Ravel , 2003, Annals of neurology.

[7]  B. Dubois,et al.  TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration , 2009, Annals of neurology.

[8]  J. Growdon,et al.  Cerebrospinal fluid levels of amyloid β‐protein in alzheimer's disease: Inverse correlation with severity of dementia and effect of apolipoprotein e genotype , 1995, Annals of neurology.

[9]  H. Akiyama,et al.  TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2006, Biochemical and biophysical research communications.

[10]  A. Brun Identification and Characterization of Frontal Lobe Degeneration: Historical Perspective on the Development of FTD , 2007, Alzheimer disease and associated disorders.

[11]  M. Strong,et al.  TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein , 2007, Molecular and Cellular Neuroscience.

[12]  J. Rothstein TDP‐43 in amyotrophic lateral sclerosis: Pathophysiology or patho‐babel? , 2007, Annals of neurology.

[13]  Andrea D'Ambrogio,et al.  Structural determinants of the cellular localization and shuttling of TDP-43 , 2008, Journal of Cell Science.

[14]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[15]  N. Bresolin,et al.  TARDBP (TDP‐43) sequence analysis in patients with familial and sporadic ALS: identification of two novel mutations , 2009, European journal of neurology.

[16]  M. Freedman,et al.  Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis , 2009, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[17]  J. Trojanowski,et al.  Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. , 2008, Archives of neurology.

[18]  J. Trojanowski,et al.  TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, Archives of neurology.

[19]  J. Trojanowski,et al.  Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degeneration with motor neuron disease , 2007, Acta Neuropathologica.

[20]  R. Petersen,et al.  Neuropathologic Features of Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions With Progranulin Gene (PGRN) Mutations , 2007, Journal of neuropathology and experimental neurology.

[21]  Chi Li,et al.  Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Burd,et al.  hnRNP proteins and the biogenesis of mRNA. , 1993, Annual review of biochemistry.

[23]  I. Mackenzie,et al.  The molecular basis of frontotemporal dementia , 2009, Expert Reviews in Molecular Medicine.

[24]  F. Baralle,et al.  TDP43 depletion rescues aberrant CFTR exon 9 skipping , 2006, FEBS letters.

[25]  D. Mann,et al.  Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis , 2008, Acta Neuropathologica.

[26]  E. Buratti,et al.  Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. , 2004, American journal of human genetics.

[27]  Bin Zhang,et al.  Age-Dependent Emergence and Progression of a Tauopathy in Transgenic Mice Overexpressing the Shortest Human Tau Isoform , 1999, Neuron.

[28]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[29]  J. Trojanowski,et al.  Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations , 2007, Annals of neurology.

[30]  John L. Robinson,et al.  Clinical and pathological continuum of multisystem TDP-43 proteinopathies. , 2009, Archives of neurology.

[31]  J. Trojanowski,et al.  TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease , 2007, Acta Neuropathologica.

[32]  Ralf Janknecht,et al.  EWS-ETS oncoproteins: the linchpins of Ewing tumors. , 2005, Gene.

[33]  M. Morita,et al.  Phosphorylated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2008, Annals of neurology.

[34]  H. Akiyama,et al.  Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies , 2009, Acta Neuropathologica.

[35]  T. Dörk,et al.  Nuclear factor TDP‐43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping , 2001, The EMBO journal.

[36]  J. Trojanowski,et al.  Tau-mediated neurodegeneration in Alzheimer's disease and related disorders , 2007, Nature Reviews Neuroscience.

[37]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[38]  K. Talbot,et al.  TARDBP in amyotrophic lateral sclerosis: identification of a novel variant but absence of copy number variation , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[39]  H. Arai,et al.  Concurrence of TDP-43, tau and α-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies , 2007, Brain Research.

[40]  D. Dickson,et al.  TDP-43 in differential diagnosis of motor neuron disorders , 2007, Acta Neuropathologica.

[41]  B. Ghetti,et al.  TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea , 2009, Movement disorders : official journal of the Movement Disorder Society.

[42]  J. Yong,et al.  The SMN complex: an assembly machine for RNPs. , 2006, Cold Spring Harbor symposia on quantitative biology.

[43]  J. Trojanowski,et al.  Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, The American journal of pathology.

[44]  V. Meininger,et al.  Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis , 2008, Journal of Medical Genetics.

[45]  L. Chang,et al.  Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer's disease , 1995, Neurology.

[46]  P. Reddi,et al.  A Novel CpG-free Vertebrate Insulator Silences the Testis-specific SP-10 Gene in Somatic Tissues , 2007, Journal of Biological Chemistry.

[47]  J. Weissenbach,et al.  Identification and characterization of a spinal muscular atrophy-determining gene , 1995, Cell.

[48]  H. Shill,et al.  No evidence for cognitive dysfunction or depression in patients with mild restless legs syndrome , 2009, Movement disorders : official journal of the Movement Disorder Society.

[49]  A. Pestronk,et al.  TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia , 2008, Journal of Neurology, Neurosurgery, and Psychiatry.

[50]  J. Trojanowski,et al.  Concomitant TAR-DNA-Binding Protein 43 Pathology Is Present in Alzheimer Disease and Corticobasal Degeneration but Not in Other Tauopathies , 2008, Journal of neuropathology and experimental neurology.

[51]  J. Trojanowski,et al.  TDP-43: a novel neurodegenerative proteinopathy , 2007, Current Opinion in Neurobiology.

[52]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[53]  J. Trojanowski,et al.  Amyotrophic lateral sclerosis-plus syndrome with TAR DNA-binding protein-43 pathology. , 2009, Archives of neurology.

[54]  M. Stoler,et al.  cis-requirement for the maintenance of round spermatid-specific transcription. , 2006, Developmental biology.

[55]  B. Castellotti,et al.  High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis , 2009, Human mutation.

[56]  P. Mcgeer,et al.  Colocalization of Transactivation-Responsive DNA-Binding Protein 43 and Huntingtin in Inclusions of Huntington Disease , 2008, Journal of neuropathology and experimental neurology.

[57]  M. Farrer,et al.  Pallidonigral TDP-43 pathology in Perry syndrome. , 2009, Parkinsonism & related disorders.

[58]  H. Kretzschmar,et al.  A new subtype of frontotemporal lobar degeneration with FUS pathology. , 2009, Brain : a journal of neurology.

[59]  Yaowu He,et al.  Nuclear functions of heterogeneous nuclear ribonucleoproteins A/B , 2008, Cellular and Molecular Life Sciences.

[60]  A. D’Ambrogio,et al.  Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo , 2009, Nucleic acids research.

[61]  G. Schellenberg,et al.  Tau is a candidate gene for chromosome 17 frontotemporal dementia , 1998, Annals of neurology.

[62]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[63]  L. Petrucelli,et al.  Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity , 2009, Proceedings of the National Academy of Sciences.

[64]  H. Akiyama,et al.  Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43 , 2009, Alzheimer's & Dementia.

[65]  D. Cleveland,et al.  Rethinking ALS: The FUS about TDP-43 , 2009, Cell.

[66]  J. Trojanowski,et al.  Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. , 2008, Archives of neurology.

[67]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[68]  D. Neary,et al.  Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43 , 2007, Acta Neuropathologica.

[69]  E. Buratti,et al.  TDP-43 Binds Heterogeneous Nuclear Ribonucleoprotein A/B through Its C-terminal Tail , 2005, Journal of Biological Chemistry.

[70]  A. Kakita,et al.  TDP‐43 mutation in familial amyotrophic lateral sclerosis , 2008, Annals of neurology.

[71]  John L. Robinson,et al.  Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases , 2007, Acta Neuropathologica.

[72]  D. Geschwind,et al.  Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis , 2008, PLoS genetics.

[73]  J. Trojanowski,et al.  Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies* , 2009, Journal of Biological Chemistry.

[74]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[75]  O. Yokota,et al.  Pick's disease. , 2012, Advances in experimental medicine and biology.

[76]  G. Comi,et al.  Mutations of FUS gene in sporadic amyotrophic lateral sclerosis , 2009, Journal of Medical Genetics.

[77]  H. Feldman,et al.  The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. , 2006, Brain : a journal of neurology.

[78]  T. Miki,et al.  Screening for TARDBP mutations in Japanese familial amyotrophic lateral sclerosis , 2009, Journal of the Neurological Sciences.

[79]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[80]  N. M. Reddy,et al.  Higher order arrangement of the eukaryotic nuclear bodies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[81]  B Miller,et al.  Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. , 2001, Archives of neurology.

[82]  J. Trojanowski,et al.  Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies , 2009, Acta Neuropathologica.

[83]  John Q Trojanowski,et al.  Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[84]  D. Dickson,et al.  TDP‐43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease , 2007, Annals of neurology.

[85]  D. Neary,et al.  TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration , 2008, Acta Neuropathologica.

[86]  William T. Hu,et al.  Temporal lobar predominance of TDP-43 neuronal cytoplasmic inclusions in Alzheimer disease , 2008, Acta Neuropathologica.

[87]  B. Miller,et al.  Are amyotrophic lateral sclerosis patients cognitively normal? , 2003, Neurology.

[88]  A. Pick,et al.  Uber die Beziehungen der senilen Hirnatrophie zur Aphasie , 1892 .

[89]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[90]  J. Trojanowski,et al.  A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. , 1991, Science.

[91]  A. Alzheimer über eigenartige Krankheitsfälle des späteren Alters , 1911 .

[92]  John Q. Trojanowski,et al.  Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases , 2009, Journal of Neurology.

[93]  C. Duijn,et al.  Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 , 2006, Nature.

[94]  V. Meininger,et al.  Mutations in FUS cause FALS and SALS in French and French Canadian populations , 2009, Neurology.

[95]  J. Trojanowski,et al.  Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation* , 2008, Journal of Biological Chemistry.

[96]  E. Buratti,et al.  Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. , 2008, Frontiers in bioscience : a journal and virtual library.

[97]  D Harrich,et al.  Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs , 1995, Journal of virology.

[98]  R. Faber,et al.  Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. , 1999, Neurology.

[99]  J. Trojanowski,et al.  Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. , 2008, Human molecular genetics.

[100]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[101]  S. Lindquist,et al.  A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity , 2008, Proceedings of the National Academy of Sciences.

[102]  T. Beach,et al.  Abnormal phosphorylation of Ser409/410 of TDP‐43 in FTLD‐U and ALS , 2008, FEBS letters.

[103]  H. Akiyama,et al.  TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. , 2007, Brain : a journal of neurology.

[104]  J. Morris,et al.  TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. , 2007, The American journal of pathology.

[105]  K. Talbot,et al.  Recent advances in the genetics of amyotrophic lateral sclerosis and frontotemporal dementia: common pathways in neurodegenerative disease. , 2006, Human molecular genetics.

[106]  Tom Misteli,et al.  TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression , 2008, Proceedings of the National Academy of Sciences.

[107]  J. Trojanowski,et al.  Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations , 2008, Acta Neuropathologica.

[108]  S. Pantano,et al.  Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. , 2005, Journal of molecular biology.

[109]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[110]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[111]  J. Trojanowski,et al.  Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin-positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. , 2006, The American journal of pathology.

[112]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[113]  J. Trojanowski,et al.  Pathological TDP-43 in parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam , 2007, Acta Neuropathologica.

[114]  John Q Trojanowski,et al.  Progress from Alzheimer's tangles to pathological tau points towards more effective therapies now. , 2006, Journal of Alzheimer's disease : JAD.

[115]  Jennifer Farmer,et al.  Frontotemporal dementia: Clinicopathological correlations , 2006, Annals of neurology.

[116]  Roland G Henry,et al.  Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. , 2007, Archives of neurology.

[117]  M. Farrer,et al.  DCTN1 mutations in Perry syndrome , 2009, Nature Genetics.

[118]  J. Hodges,et al.  Clinicopathological correlates in frontotemporal dementia , 2004, Annals of neurology.