A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results

Miniaturized surgical devices are promising for the future development of minimally invasive and endoluminal surgery. However, the dexterity and therapeutic functions of these devices are limited. In this paper, a reconfigurable modular robotic system is proposed to perform screening and interventions in the gastrointestinal tract. In the proposed system, millimeter-sized robotic modules are ingested and tasked to assemble into an articulated mechanism in the stomach cavity. The modules are assembled according to the target location to perform precise intervention. Based on this concept, a preliminary report is presented covering the robotic schemes for the endoluminal reconfigurable platform, the design with structural functions, the control strategy, and the interval-based constraint satisfaction algorithm to determine the suitable topologies of the reconfigurable robot for the given task.

[1]  Pietro Valdastri,et al.  A miniaturized wireless control platform for robotic capsular endoscopy using advanced pseudokernel approach , 2009 .

[2]  Jianwen Shao An improved microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive applications , 2005 .

[3]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[4]  D. Oleynikov,et al.  The current state of miniature in vivo laparoscopic robotics , 2007, Journal of robotic surgery.

[5]  Jianwen Shao,et al.  A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps , 2002, Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344).

[6]  J.J. Abbott,et al.  The magnetic self-aligning hermaphroditic connector a scalable approach for modular microrobots , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[7]  Jacques Marescaux,et al.  Transatlantic robot-assisted telesurgery , 2001, Nature.

[8]  Eiichi Yoshida,et al.  Micro Self-reconfigurable Modular Robot Using Shape Memory Alloy , 2001, J. Robotics Mechatronics.

[9]  S. A. Stoeter,et al.  Proceedings - IEEE International Conference on Robotics and Automation , 2003 .

[10]  Arianna Menciassi,et al.  Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems , 2007, Biomedical microdevices.

[11]  Kenji Shiba,et al.  Energy Transmission Transformer for a Wireless Capsule Endoscope: Analysis of Specific Absorption Rate and Current Density in Biological Tissue , 2008, IEEE Transactions on Biomedical Engineering.

[12]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[13]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems , 2007 .

[14]  Paolo Dario,et al.  Electrolytic Silicone Bourdon Tube Microactuator for Reconfigurable Surgical Robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[15]  A. Neumaier Interval methods for systems of equations , 1990 .

[16]  I. Pićurić,et al.  Presence of Candida albicans in potentially malignant oral mucosal lesions , 2004 .

[17]  Denny Oetomo,et al.  Design Strategy of Serial Manipulators With Certified Constraint Satisfaction , 2009, IEEE Transactions on Robotics.

[18]  A Cuschieri,et al.  Laparoscopic surgery: current status, issues and future developments. , 2005, The surgeon : journal of the Royal Colleges of Surgeons of Edinburgh and Ireland.

[19]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[20]  S. Song,et al.  A novel microactuator for microbiopsy in capsular endoscopes , 2008 .

[21]  Satoshi Murata,et al.  Self-reconfigurable robots , 2007, IEEE Robotics & Automation Magazine.

[22]  P. Dario,et al.  Single and multiple robotic capsules for endoluminal diagnosis and surgery , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[23]  K. Arai,et al.  Fabrication of magnetic actuator for use in capsule endoscope , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[24]  S. P. Akpabio World Health Organisation , 1983, British Dental Journal.

[25]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[26]  S. Giday,et al.  Principle and history of Natural Orifice Translumenal Endoscopic Surgery (NOTES) , 2006, Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy.

[27]  Abhay S Pandit,et al.  Using computed tomography scans to develop an ex-vivo gastric model. , 2007, World journal of gastroenterology.

[28]  P. Dario,et al.  Design and Fabrication of a Motor Legged Capsule for the Active Exploration of the Gastrointestinal Tract , 2008, IEEE/ASME Transactions on Mechatronics.

[29]  Hélène Collavizza,et al.  Comparing Partial Consistencies , 1999, Reliab. Comput..

[30]  Miomir PE©IÆ,et al.  The importance of primary gastric cancer location in 5-year survival rate , 2004 .

[31]  Paolo Dario,et al.  Analysis and development of locomotion devices for the gastrointestinal tract , 2002, IEEE Transactions on Biomedical Engineering.

[32]  P. Svasta,et al.  Sensorless Brushless Motor Controller With N-MOS Technology , 2007, 2007 30th International Spring Seminar on Electronics Technology (ISSE).

[33]  Kanako Harada,et al.  Design of a bending module for assembling reconfigurable endoluminal surgical system , 2008 .

[34]  Paolo Dario,et al.  A mobile microrobot actuated by a new electromagnetic wobble micromotor , 1998 .

[35]  Jake J. Abbott,et al.  Experimental investigation of magnetic self-assembly for swallowable modular robots , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.