Efficient introduction of aromatic vinyl group by incorporation of divinylbiphenyl, p‐divinylbenzene in syndiospecific styrene polymerization using aryloxo‐modified half‐titanocene catalysts

An efficient introduction of aromatic vinyl group into syndiotactic polystyrene has been achieved by incorporation of 3,3′-divinylbiphenyl, p-divinylbenzene (DVB) in syndiospecific styrene polymerization using aryloxo-modified half-titanocenes, Cp′TiCl2(O-2,6-iPr2C6H3) (Cp′ = tBuC5H4, 1,2,4-Me3C5H2), in the presence of MAO. The resultant polymers possessed high molecular weights with uniform molecular weight distributions, and the DVB contents could be varied by the initial feed molar ratios (6–23 mol %) without decrease in the Mn values. The syndiotactic stereo-regularity and presence of the vinyl groups were confirmed by NMR spectra. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1902–1907

[1]  K. Nomura,et al.  Efficient Terpolymerization of Ethylene and Styrene with 1,7‐Octadiene by Aryloxo Modified Half‐Titanocenes–Cocatalyst Systems: Efficient Introduction of the Reactive Functionality , 2014 .

[2]  Dong-Hyun Kim,et al.  A Greener Approach for Synthesis of Functionalized Polyolefins by Introducing Reactive Functionality into Ethylene Copolymers , 2014 .

[3]  M. Jaymand Recent progress in the chemical modification of syndiotactic polystyrene , 2014 .

[4]  F. Ciardelli,et al.  Some recent advances in polyolefin functionalization , 2014 .

[5]  Dong-Hyun Kim,et al.  Introduction of reactive functionality by the incorporation of divinylbiphenyl in ethylene copolymerization with styrene or 1‐hexene using aryloxo‐modified half‐titanocenes and MAO catalysts , 2013 .

[6]  Ayusman Sen,et al.  Ortho-phosphinobenzenesulfonate: a superb ligand for palladium-catalyzed coordination-insertion copolymerization of polar vinyl monomers. , 2013, Accounts of chemical research.

[7]  Dong-Hyun Kim,et al.  Synthesis and structural analysis of phenoxy-substituted half-titanocenes with different anionic ligands, Cp*TiX(Y)(O-2,6-iPr2C6H3): Effect of anionic ligands (X,Y) in ethylene/styrene copolymerization , 2012 .

[8]  Dong-Hyun Kim,et al.  Effect of Cocatalyst in Ethylene/Styrene Copolymerization by Aryloxo‐Modified Half‐Titanocene–Cocatalyst Systems for Exclusive Synthesis of Copolymers at High Styrene Concentrations , 2012 .

[9]  T. C. Mike Chung,et al.  Functionalization of Polypropylene with High Dielectric Properties: Applications in Electric Energy Storage , 2012 .

[10]  K. Nomura New Approaches in Precise Synthesis of Polyolefins Containing Polar Functionalities by Olefin Copolymerizations Using Transition Metal Catalysts , 2010 .

[11]  K. Nomura Syndiospecific Styrene Polymerization and Ethylene/Styrene Copolymerization Using Half-Titanocenes: Ligand Effects and Some New Mechanistic Aspects , 2010 .

[12]  K. Nozaki,et al.  Coordination-insertion copolymerization of fundamental polar monomers. , 2009, Chemical reviews.

[13]  S. Coiai,et al.  Control of macromolecular architecture during the reactive functionalization in the melt of olefin polymers , 2009 .

[14]  J. Schellenberg Recent transition metal catalysts for syndiotactic polystyrene , 2009 .

[15]  P. Zinck,et al.  Functionalization of syndiotactic polystyrene , 2009 .

[16]  Kotohiro Nomura and Boonyarach Kitiyanan Recent Progress in Precise Synthesis of Polyolefins Containing Polar Functionalities by Transition Metal Catalysis , 2008 .

[17]  T. Marks,et al.  Bimetallic effects in homopolymerization of styrene and copolymerization of ethylene and styrenic comonomers: scope, kinetics, and mechanism. , 2008, Journal of the American Chemical Society.

[18]  M. Fujiki,et al.  Facile, efficient functionalization of polyolefins via controlled incorporation of terminal olefins by repeated 1,7-octadiene insertion. , 2007, Journal of the American Chemical Society.

[19]  K. Abboud,et al.  Penultimate effect in ethylene-styrene copolymerization and the discovery of highly active ethylene-styrene catalysts with increased styrene reactivity. , 2007, Journal of the American Chemical Society.

[20]  T. Marks,et al.  Nuclearity and cooperativity effects in binuclear catalysts and cocatalysts for olefin polymerization , 2006, Proceedings of the National Academy of Sciences.

[21]  K. Nomura,et al.  Living Copolymerization of Ethylene with Styrene Catalyzed by (Cyclopentadienyl)(ketimide)titanium(IV) Complex−MAO Catalyst System: Effect of Anionic Ancillary Donor Ligand , 2006 .

[22]  M. Hillmyer,et al.  Post-polymerization functionalization of polyolefins. , 2005, Chemical Society reviews.

[23]  D. Byun,et al.  Effect of Cyclopentadienyl and Anionic Ancillary Ligand in Syndiospecific Styrene Polymerization Catalyzed by Nonbridged Half-Titanocenes Containing Aryloxo, Amide, and Anilide Ligands: Cocatalyst Systems , 2004 .

[24]  T. Marks,et al.  Bimetallic catalysis for styrene homopolymerization and ethylene-styrene copolymerization. Exceptional comonomer selectivity and insertion regiochemistry. , 2004, Journal of the American Chemical Society.

[25]  K. Nomura,et al.  Syndiospecific styrene polymerization by (tert-BuC5H4)TiCl2(O-2,6-iPr2C6H3) – borate catalyst system , 2003 .

[26]  K. E. Russell Free radical graft polymerization and copolymerization at higher temperatures , 2002 .

[27]  Naofumi Naga,et al.  Ethylene/Styrene Copolymerization by Various (Cyclopentadienyl)(aryloxy)titanium(IV) Complexes-MAO Catalyst Systems , 2002 .

[28]  T. Chung Synthesis of functional polyolefin copolymers with graft and block structures , 2002 .

[29]  Y. Imanishi,et al.  Syndiospecific styrene polymerization and efficient ethylene/styrene copolymerization catalyzed by (cyclopentadienyl)(aryloxy)titanium(IV) complexes-MAO system , 2000 .

[30]  B. Novak,et al.  Copolymerization of polar monomers with olefins using transition-metal complexes. , 2000, Chemical reviews.

[31]  G. Moad The synthesis of polyolefin graft copolymers by reactive extrusion , 1999 .

[32]  Naofumi Naga,et al.  Olefin Polymerization by (Cyclopentadienyl)(aryloxy)titanium(IV) Complexes−Cocatalyst Systems , 1998 .

[33]  F. Laschi,et al.  Reactivity of the [(η5-C5Me5)TiCH3][RB(C6F5)3] Complexes Identified as Active Species in Syndiospecific Styrene Polymerization , 1998 .

[34]  T. Newman,et al.  Syndiospecific polymerization of styrene , 1998 .

[35]  W. Kaminsky,et al.  Fluorinated Half-Sandwich Complexes as Catalysts in Syndiospecific Styrene Polymerization , 1997 .

[36]  R. Mülhaupt,et al.  Copolymerization of ethene with styrene using different methylalumoxane activated half‐sandwich complexes , 1997 .

[37]  A. Grassi,et al.  Syndiospecific styrene polymerization promoted by half-titanocene catalysts : A kinetic investigation providing a closer insight to the active species , 1997 .

[38]  N. Tomotsu,et al.  Novel catalysts for syndiospecific polymerization of styrene , 1997 .

[39]  R. Mülhaupt,et al.  Influence of polymerization conditions on the copolymerization of styrene with ethylene using Me2Si(Me4Cp)(N‐tert‐butyl)TiCl2/methylaluminoxane Ziegler‐Natta catalysts , 1996 .

[40]  C. Pellecchia,et al.  Soluble catalysts for syndiotactic polymerization of styrene , 1989 .

[41]  N. Ishihara,et al.  Stereospecific polymerization of styrene giving the syndiotactic polymer , 1988 .

[42]  P. Longo,et al.  .beta.-Hydrogen abstraction and regiospecific insertion in syndiotactic polymerization of styrene , 1987 .

[43]  Masahiko Kuramoto,et al.  Crystalline syndiotactic polystyrene , 1986 .

[44]  D. Tirrell,et al.  Interactions of synthetic polymers with cell membranes and model membrane systems. 11. Glucose-dependent disruption of phospholipid vesicle membranes , 1986 .