Deep Learning Exploration of Agent-Based Social Network Model Parameters

Yohsuke Murase, Hang-Hyun Jo, ∗ János Török, 4, 5 János Kertész, 6 and Kimmo Kaski 7 RIKEN Center for Computational Science, Kobe, Japan Department of Physics, The Catholic University of Korea, Bucheon, Republic of Korea Department of Theoretical Physics, Budapest University of Technology and Economics, Budapest, Hungary Department of Network and Data Science, Central European University, Vienna, Austria MTA-BME Morphodynamics Research Group, Budapest University of Technology and Economics, Budapest, Hungary Department of Computer Science, Aalto University, Espoo, Finland The Alan Turing Institute, British Library, London, UK (Dated: July 15, 2021)

[1]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[2]  Mason A. Porter,et al.  Random walks and diffusion on networks , 2016, ArXiv.

[3]  K. Kaski,et al.  Modeling the Complex Network of Social Interactions , 2020 .

[4]  Dong Zhao,et al.  A comparative study of metamodeling methods considering sample quality merits , 2010 .

[5]  Mohammad Reza Ghasemi,et al.  Comparative studies of metamodeling and AI-Based techniques in damage detection of structures , 2018, Adv. Eng. Softw..

[6]  Robin I. M. Dunbar,et al.  Social network size in humans , 2003, Human nature.

[7]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[8]  Raj Kumar Pan,et al.  Emergence of Bursts and Communities in Evolving Weighted Networks , 2011, PloS one.

[9]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[10]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007, DAC 2006.

[11]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[12]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[13]  Kimmo Kaski,et al.  Structural transition in social networks: The role of homophily , 2018, Scientific Reports.

[14]  A. Barabasi,et al.  Analysis of a large-scale weighted network of one-toone human communication , 2007 .

[15]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[16]  Matteo Marsili,et al.  The rise and fall of a networked society: a formal model. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Federico Vazquez,et al.  Time-scale competition leading to fragmentation and recombination transitions in the coevolution of network and states. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Itsuki Noda,et al.  CARAVAN: a framework for comprehensive simulations on massive parallel machines , 2018, MMAS.

[19]  Jari Saramäki,et al.  Emergence of communities in weighted networks. , 2007, Physical review letters.

[20]  Hiroki Sayama,et al.  Introduction to the Modeling and Analysis of Complex Systems , 2015 .

[21]  Will Usher,et al.  SALib: An open-source Python library for Sensitivity Analysis , 2017, J. Open Source Softw..

[22]  D. Shahsavani,et al.  Variance-based sensitivity analysis of model outputs using surrogate models , 2011, Environ. Model. Softw..

[23]  What Big Data tells: Sampling the social network by communication channels , 2018 .

[24]  José F. Fontanari,et al.  Diffusion of innovations in Axelrod’s model , 2015, ArXiv.

[25]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[26]  Nobuyasu Ito,et al.  A tool for parameter-space explorations , 2014, ArXiv.

[27]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Nobuyasu Ito,et al.  An open-source job management framework for parameter-space exploration: OACIS , 2018, ArXiv.

[29]  Kimmo Kaski,et al.  Multi-layer weighted social network model , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  S. Redner,et al.  Non-monotonicity and divergent time scale in Axelrod model dynamics , 2007 .

[31]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[32]  Jean-Gabriel Young,et al.  Networks beyond pairwise interactions: structure and dynamics , 2020, ArXiv.

[33]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[34]  Kimmo Kaski,et al.  Modeling the Role of Relationship Fading and Breakup in Social Network Formation , 2015, PloS one.

[35]  Eric Bonabeau,et al.  Agent-based modeling: Methods and techniques for simulating human systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[37]  Gueorgi Kossinets,et al.  Empirical Analysis of an Evolving Social Network , 2006, Science.

[38]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[39]  Yérali Gandica,et al.  Cluster size entropy in the Axelrod model of social influence: small-world networks and mass media , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[41]  Maxi San Miguel,et al.  Fragmentation transitions in a coevolving nonlinear voter model , 2017, Scientific Reports.

[42]  Kimmo Kaski,et al.  Stylized facts in social networks: Community-based static modeling , 2016, Physica A: Statistical Mechanics and its Applications.