A family of constacyclic codes over F2 + uF2 + vF2 + uvF2

This paper studies (1 + u)-constacyclic codes over the ring F2 + uF2 + vF2 + uvF2. It is proved that the image of a (1+u)-constacyclic code of length n over F2+uF2+vF2+uvF2 under a Gray map is a distance invariant binary quasi-cyclic code of index 2 and length 4n. A set of generators of such constacyclic codes for an arbitrary length is determined. Some optimal binary codes are obtained directly from (1 + u)-constacyclic codes over F2 + uF2 + vF2 + uvF2.

[1]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..

[2]  Patrick Solé,et al.  Cyclic codes over M2(F2) , 2013, J. Frankl. Inst..

[3]  Suat Karadeniz,et al.  Linear codes over F 2 + uF 2 + vF 2 + uvF 2 . , 2010 .

[4]  Shixin Zhu,et al.  The Hamming Distances of Negacyclic Codes of Length 2s over GR(2a,m) , 2008, J. Syst. Sci. Complex..

[5]  Suat Karadeniz,et al.  Cyclic codes over $${{\mathbb{F}}_2+u{\mathbb{F}}_2+v{\mathbb{F}}_2+uv{\mathbb{F}}_2}$$ , 2011 .

[6]  Jacques Wolfmann Binary images of cyclic codes over Z4 , 2001, IEEE Trans. Inf. Theory.

[7]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[8]  N. J. A. Sloane,et al.  Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..

[9]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[10]  Ian F. Blake Codes over Integer Residue Rings , 1975, Inf. Control..

[11]  Suat Karadeniz,et al.  (1+ v)-Constacyclic codes over F 2 + u F 2 + v F 2 + uv F 2 , 2011 .

[12]  San Ling,et al.  Zpk+1-Linear codes , 2002, IEEE Trans. Inf. Theory.

[13]  Shixin Zhu,et al.  (1+u) constacyclic and cyclic codes over F2+uF2 , 2006, Appl. Math. Lett..

[14]  H. Dinh Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.

[15]  Shixin Zhu,et al.  (1+λu)-Constacyclic codes over Fp[u]/〈um〉 , 2010, J. Frankl. Inst..

[16]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[17]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[18]  Sergio R. López-Permouth,et al.  Cyclic Codes over the Integers Modulopm , 1997 .

[19]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[20]  Ian F. Blake Codes Over Certain Rings , 1972, Inf. Control..

[21]  Taher Abualrub,et al.  Constacyclic codes over F2+uF2 , 2009, J. Frankl. Inst..

[22]  Graham H. Norton,et al.  On the Hamming distance of linear codes over a finite chain ring , 2000, IEEE Trans. Inf. Theory.

[23]  Parampalli Udaya,et al.  Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.

[24]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[25]  Alexis Bonnecaze,et al.  Cyclic Codes and Self-Dual Codes Over , 1999 .