ACES: Automatic Evaluation of Coding Style

[1]  John DeNero,et al.  Teaching composition quality at scale: human judgment in the age of autograders , 2014, SIGCSE.

[2]  Elena L. Glassman,et al.  Feature engineering for clustering student solutions , 2014, L@S.

[3]  Sumit Basu,et al.  Divide and correct: using clusters to grade short answers at scale , 2014, L@S.

[4]  Sumit Basu,et al.  Powergrading: a Clustering Approach to Amplify Human Effort for Short Answer Grading , 2013, TACL.

[5]  Zhenghao Chen,et al.  Tuned Models of Peer Assessment in MOOCs , 2013, EDM.

[6]  David J. Malan,et al.  Streamlining grading toward better feedback , 2013, ITiCSE '13.

[7]  Ewan D. Tempero,et al.  On the differences between correct student solutions , 2013, ITiCSE '13.

[8]  Lauri Malmi,et al.  Automatic recognition of students' sorting algorithm implementations in a data structures and algorithms course , 2012, Koli Calling.

[9]  Sumit Gulwani,et al.  Automated Semantic Grading of Programs , 2012, ArXiv.

[10]  Paulo Blikstein,et al.  Modeling how students learn to program , 2012, SIGCSE '12.

[11]  Loren G. Terveen,et al.  Two peers are better than one: aggregating peer reviews for computing assignments is surprisingly accurate , 2009, GROUP.

[12]  Pete Bridge,et al.  A comparison of electronic and paper-based assignment submission and feedback , 2008, Br. J. Educ. Technol..

[13]  Charlie Daly,et al.  Mass production of individual feedback , 2003, ITiCSE '04.

[14]  Daniel Shawcross Wilkerson,et al.  Winnowing: local algorithms for document fingerprinting , 2003, SIGMOD '03.

[15]  Lauri Malmi,et al.  Fully automatic assessment of programming exercises , 2001, ITiCSE '01.

[16]  Nicholas Tran,et al.  Sim: a utility for detecting similarity in computer programs , 1999, SIGCSE '99.

[17]  Leonidas J. Guibas,et al.  Syntactic and Functional Variability of a Million Code Submissions in a Machine Learning MOOC , 2013, AIED Workshops.

[18]  Mary Thorpe,et al.  Assessment and ‘third generation’ distance education , 1998 .