Applications of multivariate visualization to behavioral sciences

The complexity of psychological science often requires the collection and analysis of multidimensional data. Such data bring about a corresponding cognitive load that has led scientists to develop techniques of scientific visualization to ease the burden. This paper provides an introduction to scientific visualization techniques, a framework for understanding those techniques, and an assessment of the suitability of this approach for psychology. The framework employed builds on the notion of balancingnoise andsmooth in statistical analysis.

[1]  Daniel B. Carr,et al.  EXPLOR4: A program for exploring four-dimensional data using stereo-ray glyphs, dimensional constraints, rotation and masking , 1987 .

[2]  Peter R. Keller,et al.  Visual cues - practical data visualization , 1993 .

[3]  E. Anderson A Semigraphical Method for the Analysis of Complex Problems , 1960 .

[4]  W. Härdle Smoothing Techniques: With Implementation in S , 1991 .

[5]  Stephan Lewandowsky,et al.  Perception of clusters in statistical maps , 1993 .

[6]  Alan E. Kazdin,et al.  Graduate Training in Statistics, Methodology, and Measurement in Psychology: A Survey of PhD Programs in North America , 1990 .

[7]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[8]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[9]  Lambertus Hesselink,et al.  Research issues in vector and tensor field visualization , 1994, IEEE Computer Graphics and Applications.

[10]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[11]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[12]  Daniel B. Carr,et al.  Looking at large data sets using binned data plots , 1992 .

[13]  William S. Cleveland,et al.  Visualizing Data , 1993 .

[14]  R. Fateman,et al.  A System for Doing Mathematics by Computer. , 1992 .

[15]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[16]  Ted Mihalisin,et al.  Visualization and analysis of multi-variate data: a technique for all fields , 1991, Proceeding Visualization '91.

[17]  Darrell L. Butler,et al.  Graphics in psychology: Pictures, data, and especially concepts , 1993 .

[18]  Peter Schröder,et al.  Research issues in volume visualization , 1994, IEEE Computer Graphics and Applications.

[19]  S. West,et al.  Multiple Regression: Testing and Interpreting Interactions. , 1994 .

[20]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[21]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[22]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[23]  A. Bowman,et al.  Adaptive Smoothing and Density-Based Tests of Multivariate Normality , 1993 .

[24]  José L. Encarnação,et al.  Research issues in perception and user interfaces , 1994, IEEE Computer Graphics and Applications.