An optimal dimension-free upper bound for eigenvalue ratios

On a closed weighted Riemannian manifold with nonnegative Bakry-\'{E}mery Ricci curvature, it is shown that the ratio of the $k$-th to first eigenvalues of the weighted Laplacian is dominated by $641k^2$, using an argument via the Cheeger constant. While improving the previous exponential upper bound, the order of $k$ here is optimal, and hence answers an open question of Funano. This approach works still on a compact finite-dimensional Alexandrov space of nonnegative curvature and proves affirmatively a conjecture of Funano and Shioya asserting a dimension free upper bound for eigenvalue ratios in that setting.

[1]  Y. Otsu,et al.  The Riemannian structure of Alexandrov spaces , 1994 .

[2]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[3]  L. Miclo On eigenfunctions of Markov processes on trees , 2008 .

[4]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .

[5]  I. Holopainen Riemannian Geometry , 1927, Nature.

[6]  P. Buser A note on the isoperimetric constant , 1982 .

[7]  Feng-Yu Wang Criteria of spectral gap for Markov operators , 2013, 1305.4460.

[8]  Dominique Bakry,et al.  Functional Inequalities for Markov semigroups , 2009 .

[9]  James R. Lee,et al.  Multiway Spectral Partitioning and Higher-Order Cheeger Inequalities , 2011, JACM.

[10]  M. Gromov,et al.  A topological application of the isoperimetric inequality , 1983 .

[11]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[12]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[13]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[14]  Shiping Liu,et al.  Multi-way dual Cheeger constants and spectral bounds of graphs , 2014, 1401.3147.

[15]  Laurent Miclo,et al.  On hyperboundedness and spectrum of Markov operators , 2014, Inventiones mathematicae.

[16]  C. McDiarmid Concentration , 1862, The Dental register.

[17]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[18]  G. Burton Sobolev Spaces , 2013 .

[19]  S. Yau,et al.  Estimates of eigenvalues of a compact Riemannian manifold , 1980 .

[20]  T. Shioya,et al.  Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces , 2001 .

[21]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[22]  Nicola Gigli,et al.  Heat Flow on Alexandrov Spaces , 2010, 1008.1319.

[23]  C. Houdré,et al.  Isoperimetric constants for product probability measures , 1997 .

[24]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[25]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[26]  T. Shioya,et al.  Concentration, Ricci Curvature, and Eigenvalues of Laplacian , 2013 .

[27]  Kei Funano,et al.  Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds , 2013, 1307.3919.

[28]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[29]  Yih-Ho Pao,et al.  The Spectral Gap , 1969 .

[30]  Karl-Theodor Sturm,et al.  On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces , 2013, 1303.4382.

[31]  A. G. Setti Eigenvalue estimates for the weighted laplacian on a riemannian manifold , 1998 .

[32]  Luca Trevisan,et al.  Improved Cheeger's inequality: analysis of spectral partitioning algorithms through higher order spectral gap , 2013, STOC '13.