The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin

[1]  B. Kohn,et al.  Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift , 2013 .

[2]  Lin Ding,et al.  Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau , 2013 .

[3]  J. Eiler,et al.  The clumped isotope geothermometer in soil and paleosol carbonate , 2013 .

[4]  L. Ding,et al.  Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau , 2013 .

[5]  B. Xia,et al.  Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision , 2012 .

[6]  Lin Ding,et al.  Landscape evolution of a bedrock peneplain on the southern Tibetan Plateau revealed by in situ-produced cosmogenic 10 Be and 21 Ne , 2012 .

[7]  C. Garzione,et al.  Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate , 2012 .

[8]  G. Gehrels,et al.  Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone , 2011 .

[9]  S. Davies,et al.  Diagenesis of fossil ostracods : implications for stable isotope based palaeoenvironmental reconstruction , 2011 .

[10]  L. Ding,et al.  Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision , 2011 .

[11]  J. Eiler,et al.  The paleoaltimetry of Tibet: An isotopic perspective , 2011, American Journal of Science.

[12]  P. Bown,et al.  Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints , 2010 .

[13]  L. Ding,et al.  Position of the Lhasa terrane prior to India–Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: constraints on the age of collision and post-collisional shortening within the Tibetan Plateau , 2010 .

[14]  Baochun Huang,et al.  New constraints to the onset of the India–Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China , 2010 .

[15]  Fu-Yuan Wu,et al.  Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet , 2010 .

[16]  W. Boos,et al.  Dominant control of the South Asian monsoon by orographic insulation versus plateau heating , 2010, Nature.

[17]  B. Bookhagen,et al.  δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions , 2009 .

[18]  Brian S. Currie,et al.  Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers , 2009 .

[19]  Wei-Qiang Ji,et al.  Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet , 2009 .

[20]  A. Leier,et al.  Stable isotopic results from paleosol carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration , 2009 .

[21]  P. DeCelles,et al.  The late Miocene through present paleoelevation history of southwestern Tibet , 2009, American Journal of Science.

[22]  G. Dupont‐Nivet,et al.  Erratum: Tibetan Uplift Prior to The Eocene-Oligocene Climate Transition: Evidence From Pollen Analysis of The Xining Basin , 2008 .

[23]  G. Gehrels,et al.  Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet , 2008 .

[24]  Z. Hou,et al.  Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet , 2008 .

[25]  Chengshan Wang,et al.  Constraints on the early uplift history of the Tibetan Plateau , 2008, Proceedings of the National Academy of Sciences.

[26]  M. Clark The Significance of Paleotopography , 2007 .

[27]  J. Eiler,et al.  Paleoelevation Reconstruction using Pedogenic Carbonates , 2007 .

[28]  A. Leier,et al.  Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau , 2007 .

[29]  A. Leier,et al.  Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet , 2007 .

[30]  G. Gehrels,et al.  Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet , 2007 .

[31]  A. Leier,et al.  The Gangdese retroarc thrust belt revealed , 2007 .

[32]  Xiaoming Qu,et al.  Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet , 2007 .

[33]  G. Gehrels,et al.  Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain , 2007 .

[34]  C. Garzione,et al.  Stable Isotope-Based Paleoaltimetry , 2007 .

[35]  G. Gehrels,et al.  Cretaceous-Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet , 2007 .

[36]  P. DeCelles,et al.  High and dry in central Tibet during the Late Oligocene , 2007 .

[37]  D. Rowley Oxygen isotope based paleoaltimetry: Modern data-model comparison and paleo-elevation history of Tibet , 2006 .

[38]  B. Currie,et al.  Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet , 2006, Nature.

[39]  T. Harrison,et al.  Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet , 2005 .

[40]  L. Ding,et al.  Paleocene–Eocene record of ophiolite obduction and initial India‐Asia collision, south central Tibet , 2005 .

[41]  W. Kidd,et al.  Age of Initiation of the India‐Asia Collision in the East‐Central Himalaya , 2005, The Journal of Geology.

[42]  N. Tabor,et al.  Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen , 2005 .

[43]  Wan Liang-liang,et al.  Timing of Magma Mixing in the Gangdisê Magmatic Belt during the India‐Asia Collision: Zircon SHRIMP U‐Pb Dating , 2005 .

[44]  M. Leng,et al.  Palaeoclimate interpretation of stable isotope data from lake sediment archives , 2004 .

[45]  L. Ding,et al.  Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction , 2003 .

[46]  D. Dettman,et al.  Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau , 2003 .

[47]  L. Ding,et al.  New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision , 2003 .

[48]  B. John,et al.  Stable isotope and trace element geochemistry of the basal Bouse Formation carbonate, southwestern United States: Implications for the Pliocene uplift history of the Colorado Plateau , 2003 .

[49]  P. Valdes,et al.  Constant elevation of southern Tibet over the past 15 million years , 2003, Nature.

[50]  Gabriel J. Bowen,et al.  Spatial distribution of δ18O in meteoric precipitation , 2002 .

[51]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[52]  R. Pierrehumbert,et al.  A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene , 2001 .

[53]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[54]  P. DeCelles,et al.  Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya , 2000 .

[55]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[56]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[57]  M. Kraus Paleosols in clastic sedimentary rocks: their geologic applications , 1999 .

[58]  U. V. Grafenstein,et al.  Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies , 1999 .

[59]  L. Araguás‐Araguás,et al.  Stable isotope composition of precipitation over southeast Asia , 1998 .

[60]  D. Rowley Minimum Age of Initiation of Collision Between India and Asia North of Everest Based on the Subsidence History of the Zhepure Mountain Section , 1998, The Journal of Geology.

[61]  X. Wang,et al.  Did the Indo-Asian collision alone create the Tibetan plateau? , 1997 .

[62]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[63]  D. Rowley Age of initiation of collision between India and Asia: A review of stratigraphic data , 1996 .

[64]  Eric J. Fielding,et al.  Tibet uplift and erosion , 1996 .

[65]  S. Dürr Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet) , 1996 .

[66]  J. Quade,et al.  Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols , 1995 .

[67]  T. Harrison,et al.  Thermal evolution of the Gangdese batholith, southern Tibet: A history of episodic unroofing , 1995 .

[68]  J. Zachos,et al.  Evolution of Early Cenozoic marine temperatures , 1994 .

[69]  L. Jolivet,et al.  Kinematics, topography, shortening, and extrusion in the India‐Eurasia collision , 1992 .

[70]  M. Raymo,et al.  Tectonic forcing of late Cenozoic climate , 1992, Nature.

[71]  M. Gaetani,et al.  Multicyclic History of the Northern India Continental Margin (Northwestern Himalaya) (1) , 1991 .

[72]  M. Talbot A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates , 1990 .

[73]  J. Kutzbach,et al.  Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west , 1989 .

[74]  Li Huan,et al.  The Tibetan plateau: regional stratigraphic context and previous work , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[75]  D. Cooper,et al.  The closing of Tethys and the tectonics of the Himalaya , 1987 .

[76]  A. Miall Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits , 1985 .

[77]  C. Kendall,et al.  Comparison of stable isotope reference samples , 1983, Nature.

[78]  K. Huntington,et al.  Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry , 2013 .

[79]  Qiang Li,et al.  A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry , 2012 .

[80]  Qinghai Zhang,et al.  Early Cretaceous Gangdese retroarc foreland basin evolution in the Selin Co basin, central Tibet: evidence from sedimentology and detrital zircon geochronology , 2011 .

[81]  A. Leier,et al.  The Takena Formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin , 2007 .

[82]  A. Miall The Geology of Fluvial Deposits , 2006 .

[83]  Carmala N. Garzionea,et al.  Carbonate oxygen isotope paleoaltimetry : evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan plateau , 2004 .

[84]  M. Kohn,et al.  Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y , 2001 .

[85]  D. Engstrom,et al.  Geochemistry of ostracode calcite: Part 2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni , 1997 .

[86]  W. Ruddiman Tectonic uplift and climate change , 1997 .

[87]  D. Engstrom,et al.  Geochemistry of ostracode calcite: Part 1. An experimental determination of oxygen isotope fractionation , 1997 .

[88]  A. Şengör The Cimmeride Orogenic System and the Tectonics of Eurasia , 1984 .

[89]  G. Mack,et al.  Alluvial-fan sedimentation of the Cutler Formation (Permo-Pennsylvanian) near Gateway, Colorado , 1984 .

[90]  H. Craig Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide , 1957 .