Improving Proton Conductivity by Navigating Proton Trapping in High Scandium-Doped Barium Zirconate Electrolytes

[1]  Meng Li,et al.  Activating nano-bulk interplays for sustainable ammonia electrosynthesis , 2022, Materials Today.

[2]  Hongmei Luo,et al.  An Unbalanced Battle in Excellence: Revealing Effect of Ni/Co Occupancy on Water Splitting and Oxygen Reduction Reactions in Triple-Conducting Oxides for Protonic Ceramic Electrochemical Cells. , 2022, Small.

[3]  Wei Wu,et al.  Revitalizing interface in protonic ceramic cells by acid etch , 2022, Nature.

[4]  K. Strzałkowski,et al.  Positron lifetime spectroscopy of defect structures in Cd1–x Zn x Te mixed crystals grown by vertical Bridgman–Stockbarger method , 2021, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials.

[5]  S. Grieshammer,et al.  The effect of ionic defect interactions on the hydration of yttrium-doped barium zirconate. , 2021, Physical chemistry chemical physics : PCCP.

[6]  Xin Liu,et al.  Yttrium‐Doped Barium Zirconate‐Cerate Solid Solution as Proton Conducting Electrolyte: Why Higher Cerium Concentration Leads to Better Performance for Fuel Cells and Electrolysis Cells , 2021, Advanced Energy Materials.

[7]  Donglin Han,et al.  Proton Conductive BaZr0.8-xCexY0.2O3-δ: Influence of NiO Sintering Additive on Crystal Structure, Hydration Behavior, and Conduction Properties. , 2020, ChemSusChem.

[8]  A. Kuwabara,et al.  Oxygen Affinity: The Missing Link Enabling Prediction of Proton Conductivities in Doped Barium Zirconates , 2020, Chemistry of Materials.

[9]  A. Kuwabara,et al.  Dopant arrangements in Y-doped BaZrO3 under processing conditions and their impact on proton conduction: a large-scale first-principles thermodynamics study , 2020 .

[10]  Yuji Okuyama,et al.  Fast and Stable Proton Conduction in Heavily Scandium‐Doped Polycrystalline Barium Zirconate at Intermediate Temperatures , 2020, Advanced Energy Materials.

[11]  Yong Ding,et al.  Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production , 2020, Nature Communications.

[12]  J. Maier,et al.  Effect of NiO addition on proton uptake of BaZr1-xYxO3-x/2 and BaZr1-xScxO3-x/2 electrolytes , 2020 .

[13]  Manfred Martin,et al.  Nanoscale percolation in doped BaZrO3 for high proton mobility , 2019, Nature Materials.

[14]  K. Toyoura,et al.  Carrier–Carrier Interaction in Proton-Conducting Perovskites: Carrier Blocking vs Trap-Site Filling , 2019, The Journal of Physical Chemistry C.

[15]  L. Putilov,et al.  Impact of bound ionic defects on the hydration of acceptor-doped proton-conducting perovskites. , 2019, Physical chemistry chemical physics : PCCP.

[16]  Donglin Han,et al.  Thermodynamic maximum of Y doping level in barium zirconate in co-sintering with NiO , 2019, Journal of Materials Chemistry A.

[17]  L. Weston,et al.  Optimizing Proton Conductivity in Zirconates through Defect Engineering , 2019, ACS Applied Energy Materials.

[18]  K. Toyoura,et al.  Preferential proton conduction along a three-dimensional dopant network in yttrium-doped barium zirconate: a first-principles study , 2018 .

[19]  I. Lubomirsky,et al.  Impact of point defects on the elastic properties of BaZrO3: Comprehensive insight from experiments and ab initio calculations , 2018, Acta Materialia.

[20]  Donglin Han,et al.  Detrimental Effect of Sintering Additives on Conducting Ceramics: Yttrium-Doped Barium Zirconate. , 2018, ChemSusChem.

[21]  Meilin Liu,et al.  A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane , 2018 .

[22]  G. Veith,et al.  The Influence of Local Distortions on Proton Mobility in Acceptor Doped Perovskites , 2018, Chemistry of Materials.

[23]  A. Wildes,et al.  Role of the doping level in localized proton motions in acceptor-doped barium zirconate proton conductors. , 2018, Physical chemistry chemical physics : PCCP.

[24]  H. Takamura,et al.  Atomistic Insight into the Correlation among Oxygen Vacancies, Protonic Defects, and the Acceptor Dopants in Sc-Doped BaZrO3 Using First-Principles Calculations , 2018 .

[25]  T. Yamaguchi,et al.  Dissociation behavior of protons incorporated in yttrium doped barium zirconate , 2017 .

[26]  S. M. Gaita,et al.  Influence of Yttrium Concentration on Local Structure in BaZr1-xYxO3-delta Based Proton Conductors , 2017 .

[27]  E. Traversa,et al.  Effect of Dopant–Host Ionic Radii Mismatch on Acceptor-Doped Barium Zirconate Microstructure and Proton Conductivity , 2017 .

[28]  M. Karlsson,et al.  Localized Proton Motions in Acceptor-Doped Barium Zirconates , 2017 .

[29]  L. Putilov,et al.  The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3 , 2017 .

[30]  H. Matsumoto,et al.  First-Principles Calculations for the Energetics of the Hydration Reaction of Acceptor-Doped BaZrO3 , 2017 .

[31]  Donglin Han,et al.  Transport properties of acceptor-doped barium zirconate by electromotive force measurements , 2016 .

[32]  T. S. Bjørheim,et al.  The pivotal role of the dopant choice on the thermodynamics of hydration and associations in proton conducting BaCe0.9X0.1O3−δ (X = Sc, Ga, Y, In, Gd and Er) , 2015 .

[33]  H. Takamura,et al.  Correlation among Oxygen Vacancies, Protonic Defects, and the Acceptor Dopant in Sc-Doped BaZrO3 Studied by 45Sc Nuclear Magnetic Resonance , 2015 .

[34]  S. Eriksson,et al.  Hydration thermodynamics of the proton conducting oxygen-deficient perovskite series BaTi1-xMxO3-x/2 with M = In or Sc. , 2015, Inorganic chemistry.

[35]  G. Wahnstrom,et al.  Size and shape of oxygen vacancies and protons in acceptor-doped barium zirconate , 2015, 1502.06432.

[36]  T. Mineva,et al.  Effect of dopant nature on structures and lattice dynamics of proton-conducting BaZrO3 , 2013 .

[37]  Yoshihiro Yamazaki,et al.  Proton trapping in yttrium-doped barium zirconate. , 2013, Nature materials.

[38]  Yan-cheng Wang,et al.  Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study , 2012 .

[39]  Guangjie Shao,et al.  A novel amperometric hydrogen sensor based on nano-structured ZnO sensing electrode and CaZr0.9In0.1O3−δ electrolyte , 2012 .

[40]  J. Maier,et al.  Long-Range and Short-Range Structure of Proton-Conducting Y:BaZrO3 , 2011 .

[41]  S. Licoccia,et al.  Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? , 2010 .

[42]  P. Dahl,et al.  Space–charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3 − δ , 2010 .

[43]  K. Kreuer,et al.  Dopants and defects: Local structure and dynamics in barium cerates and zirconates , 2010 .

[44]  H. Bentzer,et al.  EMF measurements on mixed protonic/electronic conductors for hydrogen membrane applications , 2010 .

[45]  S. Haile,et al.  High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate , 2009 .

[46]  K. Kreuer,et al.  Proton Dynamics in In:BaZrO3: Insights on the Atomic and Electronic Structure from X-ray Absorption Spectroscopy , 2009 .

[47]  Masatsugu Oishi,et al.  Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO3 Part 1: The defect concentration of BaCe0.9M0.1O3-δ (M=Y and Yb) , 2009 .

[48]  S. Haile,et al.  Defect Chemistry of Yttrium-Doped Barium Zirconate: A Thermodynamic Analysis of Water Uptake , 2008 .

[49]  T. Kamiya,et al.  Proton Conduction in In3 + -Doped SnP2O7 at Intermediate Temperatures , 2006 .

[50]  T. Omata,et al.  Infrared Study of High-Temperature Proton-Conducting Aliovalently Doped SrZrO3 and BaZrO3 Formation of Y O 6 Clusters in Y-Doped Sr Zr O 3 , 2005 .

[51]  K. Kreuer First published online as a Review in Advance on April 9, 2003 PROTON-CONDUCTING OXIDES , 2022 .

[52]  H. Langhammer,et al.  Donor-doping effect in BaTiO3 ceramics using positron annihilation spectroscopy , 2003 .

[53]  A. Uedono,et al.  Study of oxygen vacancies in SrTiO3 by positron annihilation , 2002 .

[54]  F. Plazaola,et al.  Positron lifetime calculation for the elements of the periodic table , 2001, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[56]  Meilin Liu,et al.  Effect of Interfacial Resistance on Determination of Transport Properties of Mixed‐Conducting Electrolytes , 1996 .

[57]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[58]  H. Iwahara,et al.  Technological challenges in the application of proton conducting ceramics , 1995 .

[59]  Noboru Yamazoe,et al.  Interactions of tin oxide surface with O2, H2O AND H2 , 1979 .

[60]  William T. Gibbons,et al.  A mini-review on proton conduction of BaZrO3-based perovskite electrolytes , 2021, Journal of Physics: Energy.

[61]  D. Ding,et al.  Chemical and structural origin of hole states in yttria-stabilized zirconia , 2021 .

[62]  Donglin Han,et al.  Correlation between electroconductive and structural properties of proton conductive acceptor-doped barium zirconate , 2015 .

[63]  Catalyst Deactivation Probed by Positron Annihilation Spectroscopy , 2022 .