d-f heterobimetallic association between ytterbium and ruthenium carbon-rich complexes: redox commutation of near-IR luminescence.

We describe how the association between an ytterbium ion and a ruthenium carbon-rich complex enables the first switching of the near-IR Yb(III) luminescence by taking advantage of the redox commutation of the carbon-rich antenna.

[1]  K. Costuas,et al.  Polynuclear carbon-rich organometallic complexes: clarification of the role of the bridging ligand in the redox properties. , 2011, Dalton transactions.

[2]  Simon J. A. Pope,et al.  Luminescent probes based on water-soluble, dual-emissive lanthanide complexes: metal ion-induced modulation of near-IR emission. , 2011, Chemical communications.

[3]  M. Ward Mechanisms of sensitization of lanthanide(III)-based luminescence in transition metal/lanthanide and anthracene/lanthanide dyads , 2010 .

[4]  O. Maury,et al.  Tetrathiafulvalene-amido-2-pyridine-N-oxide as efficient charge-transfer antenna ligand for the sensitization of Yb(III) luminescence in a series of lanthanide paramagnetic coordination complexes. , 2010, Chemistry.

[5]  Chunhui Huang,et al.  Sensitized luminescence from lanthanides in d–f bimetallic complexes , 2010 .

[6]  Yuya Tanaka,et al.  Photochromic organometallics with a dithienylethene (DTE) Bridge, [Y-C[triple bond]C-DTE-C[triple bond]C-Y] (Y={MCp*(dppe)}): photoswitchable molecular wire (M=Fe) versus dual photo- and electrochromism (M=Ru). , 2010, Chemistry.

[7]  V. Maurel,et al.  "Chain-like" trimetallic ruthenium complexes with C7 carbon-rich bridges: experimental and theoretical investigations of electronic communication tuning in five distinct oxidation states. , 2010, Journal of the American Chemical Society.

[8]  Gianluca Accorsi,et al.  Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials , 2010 .

[9]  J. Bünzli Lanthanide luminescence for biomedical analyses and imaging. , 2010, Chemical reviews.

[10]  J. Bünzli,et al.  Lanthanide luminescence for functional materials and bio-sciences. , 2010, Chemical Society reviews.

[11]  C. Andraud,et al.  Lanthanide Complexes for Nonlinear Optics: From Fundamental Aspects to Applications , 2009 .

[12]  Wei-Chuan Sun,et al.  Luminescence switching of a cyclometalated iridium(III) complex through a redox-active tetrathiafulvalene-based ligand. , 2009, Chemistry.

[13]  P. Molina,et al.  A redox-fluorescent molecular switch based on a heterobimetallic Ir(iii) complex with a ferrocenyl azaheterocycle as ancillary ligand. , 2009, Dalton transactions.

[14]  K. Raymond,et al.  From antenna to assay: lessons learned in lanthanide luminescence. , 2009, Accounts of chemical research.

[15]  M. Humphrey,et al.  Bonding and Electron Delocalization in Ruthenium(III) σ-Arylacetylide Radicals [trans-Cl(η2-dppe)2RuC≡C(4-C6H4X)]+ (X = NO2, C(O)H, C(O)Me, F, H, OMe, NMe2): Misleading Aspects of the ESR Anisotropy , 2009 .

[16]  Susan J. Quinn,et al.  Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies , 2008 .

[17]  C. Lagrost,et al.  A multifunctional organometallic switch with carbon-rich ruthenium and diarylethene units. , 2008, Chemical communications.

[18]  J. Ni,et al.  Conformation changes and luminescent properties of Au-Ln (Ln = Nd, Eu, Er, Yb) arrays with 5-ethynyl-2,2'-bipyridine. , 2008, Inorganic Chemistry.

[19]  H. Nishihara,et al.  Photochrome-coupled metal complexes: molecular processing of photon stimuli. , 2008, Dalton transactions.

[20]  J. Bünzli,et al.  Visible-Light Excitation of Infrared Lanthanide Luminescence via Intra-Ligand Charge-Transfer State in 1,3-Diketonates Containing Push-Pull Chromophores , 2008 .

[21]  Michael D. Ward,et al.  Transition-metal sensitised near-infrared luminescence from lanthanides in d–f heteronuclear arrays ☆ , 2007 .

[22]  K. V. Hecke,et al.  Rare-Earth complexes of ferrocene-containing ligands: visible-light excitable luminescent materials. , 2007, Inorganic chemistry.

[23]  M. Samoć,et al.  Electrochemical switching of the cubic nonlinear optical properties of an aryldiethynyl-linked heterobimetallic complex between three distinct states. , 2006, Angewandte Chemie.

[24]  Junhua Yu,et al.  Engineering emissive europium and terbium complexes for molecular imaging and sensing. , 2006, Dalton transactions.

[25]  Anuradha Gupta,et al.  Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions. , 2005, Journal of the American Chemical Society.

[26]  T. Gunnlaugsson,et al.  Responsive lanthanide luminescent cyclen complexes: from switching/sensing to supramolecular architectures. , 2005, Chemical communications.

[27]  M. Ward,et al.  Syntheses and crystal structures of dinuclear complexes containing d-block and f-block luminophores. Sensitization of NIR luminescence from Yb(III), Nd(III), and Er(III) centers by energy transfer from Re(I)- and Pt(II)-bipyrimidine metal centers. , 2005, Inorganic chemistry.

[28]  V. Yam,et al.  Electroswitchable photoluminescence activity: Synthesis, spectroscopy, electrochemistry, photophysics, and X-ray crystal and electronic structures of[Re(bpy)(CO)3(C≡C-C6H4-C≡C)Fe(C5Me5)(dppe)][PF6]n (n = 0, 1) , 2003 .

[29]  M. Ward,et al.  Visible-light sensitisation of near-infrared luminescence from Yb(III), Nd(III) and Er(III) complexes of 3,6-bis(2-pyridyl)tetrazine , 2003 .

[30]  S. Rigaut,et al.  Ruthenium Acetylide Oxidation: From Stable Radicals to Allenylidene Synthesis via γ-Elimination of H+ , 2002 .