Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function

Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze commercial solar panel performance (i.e., the current-voltage–I-V–curve) at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer’s datasheet.

[1]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[2]  W. G. Pfann,et al.  Radioactive and Photoelectric p‐n Junction Power Sources , 1954 .

[3]  M. Prince Silicon Solar Energy Converters , 1955 .

[4]  M. Wolf,et al.  SERIES RESISTANCE EFFECTS ON SOLAR CELL MEASUREMENTS , 1963 .

[5]  K. L. Kennerud Analysis of Performance Degradation in CdS Solar Cells , 1969, IEEE Transactions on Aerospace and Electronic Systems.

[6]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[7]  Hans S. Rauschenbach,et al.  Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion , 1980 .

[8]  P. Mialhe,et al.  A practical method of analysis of the current-voltage characteristics of solar cells , 1981 .

[9]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[10]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[11]  Luis Muñoz,et al.  ENERGIA SOLAR FOTOVOLTAICA , 2012, Anais Congresso Brasileiro de Energia Solar - CBENS.

[12]  J. A. Gow,et al.  Development of a photovoltaic array model for use in power-electronics simulation studies , 1999 .

[13]  Geoffrey R. Walker,et al.  Evaluating MPPT Converter Topologies Using a Matlab PV Model , 2000 .

[14]  A. Jayakumar,et al.  Exact analytical solution for current flow through diode with series resistance , 2000 .

[15]  Robert M Corless,et al.  Some applications of the Lambert W  function to physics , 2000, Canadian Journal of Physics.

[16]  Jiann-Fuh Chen,et al.  Novel maximum-power-point-tracking controller for photovoltaic energy conversion system , 2001, IEEE Trans. Ind. Electron..

[17]  H. Zogg,et al.  CdTe/CdS SOLAR CELL PERFORMANCE UNDER LOW IRRADIANCE , 2001 .

[18]  A. García,et al.  Selecting a suitable model for characterizing photovoltaic devices , 2002 .

[19]  J. Caillol Some applications of the Lambert W function to classical statistical mechanics , 2003, cond-mat/0306562.

[20]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[21]  Weidong Xiao,et al.  A novel modeling method for photovoltaic cells , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[22]  E. E. van Dyk,et al.  Analysis of the effect of parasitic resistances on the performance of photovoltaic modules , 2004 .

[23]  A. Kapoor,et al.  A new approach to study organic solar cell using Lambert W-function , 2005 .

[24]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[25]  J. Amador,et al.  A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances , 2007 .

[26]  M. Niwano,et al.  An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic , 2008 .

[27]  Marcelo Gradella Villalva,et al.  Modeling and circuit-based simulation of photovoltaic arrays , 2009, 2009 Brazilian Power Electronics Conference.

[28]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[29]  Giuseppina Ciulla,et al.  An improved five-parameter model for photovoltaic modules , 2010 .

[30]  Dionisio Ramirez,et al.  Simple estimation of PV modules loss resistances for low error modelling , 2010 .

[31]  Xuegui Zhu,et al.  Sensitivity analysis and more accurate solution of photovoltaic solar cell parameters , 2011 .

[32]  F. Ghani,et al.  Numerical determination of parasitic resistances of a solar cell using the Lambert W-function , 2011 .

[33]  T. Razykov,et al.  Solar photovoltaic electricity: Current status and future prospects , 2011 .

[34]  A. Das Analytical derivation of explicit J–V model of a solar cell from physics based implicit model , 2012 .

[35]  D. Cotfas,et al.  The methods to determine the series resistance and the ideality factor of diode for solar cells-review , 2012, 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM).

[36]  Erdem Cuce,et al.  A novel model of photovoltaic modules for parameter estimation and thermodynamic assessment , 2012 .

[37]  A. Kuperman,et al.  Five-parameter model of photovoltaic cell based on STC data and dimensionless , 2012, 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel.

[38]  A. H. Al Qahtani A simplified and accurate photovoltaic module parameters extraction approach using matlab , 2012, 2012 IEEE International Symposium on Industrial Electronics.

[39]  Sakaros Bogning Dongue,et al.  Modeling Of Electrical Response of Illuminated Crystalline Photovoltaic Modules Using Four- And Five-Parameter Models , 2012 .

[40]  D. Carroll,et al.  Evaluation of methods to extract parameters from current–voltage characteristics of solar cells , 2013 .

[41]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[42]  Lele Peng,et al.  A new method for determining the characteristics of solar cells , 2013 .

[43]  Javier Cubas,et al.  New method for analytical photovoltaic parameter extraction , 2013, 2013 International Conference on Renewable Energy Research and Applications (ICRERA).

[44]  Daniel T. Cotfas,et al.  Methods to determine the dc parameters of solar cells: A critical review , 2013 .

[45]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[46]  Prudence W. H. Wong,et al.  Approximate Single-Diode Photovoltaic Model for Efficient I-V Characteristics Estimation , 2013, TheScientificWorldJournal.

[47]  Javier Cubas,et al.  On the analytical approach for modeling photovoltaic systems behavior , 2014 .

[48]  Alon Kuperman,et al.  An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel , 2014 .

[49]  Antonino Laudani,et al.  High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I–V curves by using reduced forms , 2014 .

[50]  Zhuo Meng,et al.  An improved model and parameters extraction for photovoltaic cells using only three state points at standard test condition , 2014 .