Introduction to Discrete Calculus

In this chapter we review conventional vector calculus from the standpoint of a generalized exposition in terms of exterior calculus and the theory of forms. This generalization allows us to distill the important elements necessary to operate the basic machinery of conventional vector calculus. This basic machinery is then redefined in a discrete setting to produce appropriate definitions of the domain, boundary, functions, integrals, metric and derivative. These definitions are then employed to demonstrate how the structure of the discrete calculus behaves analogously to the conventional vector calculus in many different ways.

[1]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[2]  Vladimir Kolmogorov,et al.  Computing geodesics and minimal surfaces via graph cuts , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  A. Lichnerowicz Theorie globale des connexions et des groupes d'holonomie , 1955 .

[4]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[6]  E. Burger A. Lichnerowicz, Théorie globale des connexions et groupes d'holonomie. XVI + 284 S. Rom 1955. Endizione cremonese. Preis geb. 4000 L , 1956 .

[7]  B. Gelbaum,et al.  Problems in analysis , 1964 .

[8]  Jenny Harrison Geometric Hodge star operator with applications to the theorems of Gauss and Green , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[10]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[11]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[12]  Ann K. Stehney,et al.  Geometrical Methods of Mathematical Physics by Bernard F. Schutz , 1980 .

[13]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[14]  W. T. Tutte,et al.  Graph theory and related topics , 1979 .

[15]  F. Chung The Laplacian of a Hypergraph. , 1992 .

[16]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[17]  R. Darling Differential forms and connections , 1994 .

[18]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[19]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[20]  F. Chung Laplacians and the Cheeger Inequality for Directed Graphs , 2005 .

[21]  T. Frankel The Geometry of Physics , 1997 .

[22]  Enzo Tonti,et al.  A Direct Discrete Formulation of Field Laws: The Cell Method , 2001 .

[23]  B. Jancewicz The Extended Grassmann Algebra of R3 , 1996 .

[24]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  W. E. Baylis Clifford (Geometric) Algebras: With Applications to Physics, Mathematics, and Engineering , 1999 .

[26]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[27]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[28]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[29]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Dold Lectures on Algebraic Topology , 1972 .

[31]  David Hestenes,et al.  Space-time algebra , 1966 .

[32]  N. Biggs Algebraic Potential Theory on Graphs , 1997 .

[33]  Mathieu Desbrun,et al.  Discrete Differential Geometry , 2008 .

[34]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[35]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[36]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[37]  Thomas Rylander,et al.  Computational Electromagnetics , 2005, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar.

[38]  Karl F. Warnick,et al.  Teaching Electromagnetic Field Theory Using Differential Forms , 1997, Teaching Electromagnetics.

[39]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[40]  H. Whitney Geometric Integration Theory , 1957 .

[41]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[42]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[43]  Claudio Mattiussi,et al.  The Finite Volume, Finite Difference, and Finite Elements Methods as Numerical Methods for Physical Field Problems , 2000 .

[44]  P.R. Kotiuga Theoretical Limitations of Discrete Exterior Calculus in the Context of Computational Electromagnetics , 2008, IEEE Transactions on Magnetics.

[45]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[46]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[47]  Serge J. Belongie,et al.  Higher order learning with graphs , 2006, ICML.

[48]  R. J. Wilson Analysis situs , 1985 .

[49]  J P Roth,et al.  AN APPLICATION OF ALGEBRAIC TOPOLOGY TO NUMERICAL ANALYSIS: ON THE EXISTENCE OF A SOLUTION TO THE NETWORK PROBLEM. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Refael Hassin,et al.  Maximum Flow in (s, t) Planar Networks , 1981, Inf. Process. Lett..

[51]  Paul W. Gross,et al.  Electromagnetic Theory and Computation: A Topological Approach , 2004 .

[52]  Ralf Hiptmair,et al.  Discrete Hodge-Operators: an Algebraic Perspective , 2001 .

[53]  Anil N. Hirani,et al.  PyDEC: Software and Algorithms for Discretization of Exterior Calculus , 2011, TOMS.

[54]  M. Shashkov,et al.  Compatible spatial discretizations , 2006 .

[55]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[56]  O. Veblen,et al.  The Foundations of Differential Geometry , 1932 .