Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors

Presented in this paper is the description of a Markov chain Monte Carlo (MCMC) routine for conducting coherent parameter estimation for interferometric gravitational wave observations of an inspiral of binary compact objects using multiple detectors. Data from several interferometers are processed, and all nine parameters (ignoring spin) associated with the binary system are inferred, including the distance to the source, the masses, and the location on the sky. The data is matched with time-domain inspiral templates that are 2.5 post-Newtonian (PN) in phase and 2.0 PN in amplitude. We designed and tuned an MCMC sampler so that it is able to efficiently find the posterior mode(s) in the parameter space and perform the stochastic integration necessary for inference within a Bayesian framework. Our routine could be implemented as part of an inspiral detection pipeline for a world-wide network of detectors. Examples are given for simulated signals and data as seen by the LIGO and Virgo detectors operating at their design sensitivity.

[1]  E. Porter,et al.  Catching supermassive black hole binaries without a net , 2006, gr-qc/0605135.

[2]  R. O’Shaughnessy,et al.  Formation of double compact objects , 2006, astro-ph/0612144.

[3]  S. Dhurandhar,et al.  Detecting gravitational waves from inspiraling binaries with a network of detectors: Coherent versus coincident strategies , 2006, gr-qc/0608103.

[4]  Bernard F. Schutz,et al.  Status of the GEO600 detector , 2006 .

[5]  M. M. Casey,et al.  Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries , 2006 .

[6]  Bernard F. Schutz,et al.  Search for gravitational waves from binary black hole inspirals in LIGO data , 2006 .

[7]  N. Christensen,et al.  Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data , 2006, gr-qc/0602067.

[8]  M. Loupias,et al.  The status of VIRGO RID E-4989-2010 RID F-8892-2011 RID B-5375-2009 RID A-1920-2008 RID D-5527-2009 RID F-1444-2010 , 2006 .

[9]  B. Iyer,et al.  Erratum: Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order [Phys. Rev. D 65, 061501(R) (2002)] , 2005 .

[10]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.

[11]  E. al.,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005, gr-qc/0505042.

[12]  B. Iyer,et al.  The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits , 2004, gr-qc/0404085.

[13]  U. von Toussaint,et al.  Bayesian inference and maximum entropy methods in science and engineering , 2004 .

[14]  Daniel Enard,et al.  Status of VIRGO , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[16]  T. Damour,et al.  Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.

[17]  Daniel Sigg,et al.  Commissioning of LIGO detectors , 2004 .

[18]  A. Libson,et al.  A Metropolis-Hastings routine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data , 2004 .

[19]  S. Ballmer,et al.  Se p 20 03 Detector Description and Performance for the First Coincidence Observations between LIGO and GEO The LIGO Scientific Collaboration , 2008 .

[20]  Operational status of TAMA300 , 2003 .

[21]  Ciro Cattuto,et al.  A parallel Beowulf-based system for the detection of gravitational waves in interferometric detectors , 2003 .

[22]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[23]  A. Buonanno,et al.  Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2002, gr-qc/0211087.

[24]  S. Hughes Tuning gravitational-wave detector networks to measure compact binary mergers , 2002, gr-qc/0209012.

[25]  A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise , 2002 .

[26]  B. Iyer,et al.  Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order , 2001, gr-qc/0105099.

[27]  P. Murdin,et al.  Encyclopedia of Astronomy and Astrophysics , 2002 .

[28]  A. Pai,et al.  Computational cost for detecting inspiralling binaries using a network of laser interferometric detectors , 2001, gr-qc/0110041.

[29]  Philip C. Gregory,et al.  A Bayesian revolution in spectral analysis , 2001 .

[30]  W. Wong,et al.  Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture Models , 2001 .

[31]  L. Blanchet Post-Newtonian Computation of Binary Inspiral Waveforms , 2001, gr-qc/0104084.

[32]  N. Christensen,et al.  Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data , 2001, gr-qc/0102018.

[33]  A. Pai,et al.  A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2000, gr-qc/0009078.

[34]  A. Sandage Malmquist Bias and Completeness Limits , 2000 .

[35]  Takahiro Tanaka,et al.  Use of new coordinates for the template space in a hierarchical search for gravitational waves from inspiraling binaries , 2000, gr-qc/0001090.

[36]  B. Barish,et al.  LIGO and the Detection of Gravitational Waves , 1999 .

[37]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates , 1997, gr-qc/9710129.

[38]  B. Barish Ligo: Status and Prospects , 1998 .

[39]  L. Finn Issues in gravitational wave data analysis , 1997, gr-qc/9709077.

[40]  P. Teerikorpi OBSERVATIONAL SELECTION BIAS AFFECTING THE DETERMINATION OF THE EXTRAGALACTIC DISTANCE SCALE , 1997 .

[41]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[42]  M. M. Casey,et al.  GEO 600: Current Status and Some Aspects of the Design , 1997 .

[43]  B. Allen Gravitational Wave Detector Sites , 1996, gr-qc/9607075.

[44]  Finn,et al.  Binary inspiral, gravitational radiation, and cosmology. , 1996, Physical review. D, Particles and fields.

[45]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[46]  Marco Lops,et al.  The status of the VIRGO experiment , 1995 .

[47]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[48]  Marković Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries. , 1993, Physical review. D, Particles and fields.

[49]  Vincent Loriette,et al.  The VIRGO Project , 1993 .

[50]  이근영,et al.  Parks-McClellan 알고리듬을 이용한 이차원 최적 근사화 FIR 디지털 필터의 설계 ( A Design of 2-D Optimal Approximation FIR Digital Filter using Parks-McClellan Algorithm ) , 1993 .

[51]  L. Finn,et al.  Gravitational radiation, inspiraling binaries, and cosmology , 1993, gr-qc/9304020.

[52]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[53]  Flanagan,et al.  The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.

[54]  E. Feigelson,et al.  Statistical Challenges in Modern Astronomy , 2004, astro-ph/0401404.

[55]  D. W. Scott Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[56]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[57]  T. Loredo Promise of Bayesian Inference for Astrophysics , 1992 .

[58]  B. Schutz Gravitational Radiation , 1989, gr-qc/0003069.

[59]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[60]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[61]  W. Israel in 300 Years of Gravitation , 1988 .

[62]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[63]  J. Justice Maximum entropy and bayesian methods in applied statistics , 1986 .

[64]  E. T. Jaynes,et al.  BAYESIAN METHODS: GENERAL BACKGROUND ? An Introductory Tutorial , 1986 .

[65]  Ludwig Weber,et al.  EUROPEAN ORGANIZATION FOR THE SAFETY OF AIR NAVIGATION (EUROCONTROL) , 1983 .

[66]  R.B. Lake,et al.  Programs for digital signal processing , 1981, Proceedings of the IEEE.

[67]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.

[68]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[69]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[70]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.