Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters.

We design a hybrid optomechanical setup, in which an ensemble of quantum emitters is coupled with a movable mirror through vacuum interaction. The optical cavity is driven along with the quantum emitters and therefore the coupling between the cavity field and the ensemble determines the dynamics of the coupled system. In particular, we investigated the influence of the vacuum coupling strength on the effective frequency and the effective damping rate of the movable mirror, which shows that the vacuum interaction enhances greatly the effective damping rate. Further, the cooling characteristics of the mechanical resonator is analyzed in detail by counting the effective phonon number in the mirror's motion. It is found that the ground-state cooling of the mechanical motion can be approached in the bad cavity limit when the vacuum coupling is included. The dependence of the cooling of the mechanical motion on the parameters of the cavity and the quantum emitter is investigated in detail numerically.

[1]  Yong‐Chun Liu,et al.  Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems , 2015 .

[2]  Hao Xiong,et al.  Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions , 2015 .

[3]  F. Nori,et al.  Squeezed optomechanics with phase-matched amplification and dissipation. , 2014, Physical review letters.

[4]  Jian-Qi Zhang,et al.  Ground state cooling of an optomechanical resonator assisted by a Λ-type atom. , 2014, Optics express.

[5]  Hao Xiong,et al.  Formation and manipulation of optomechanical chaos via a bichromatic driving , 2014 .

[6]  W. Nie,et al.  Generating large steady-state optomechanical entanglement by the action of Casimir force , 2014 .

[7]  M. Hartmann,et al.  Entangling the motion of two optically trapped objects via time-modulated driving fields , 2014, 1408.3423.

[8]  W. Nie,et al.  Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system , 2014, 1407.5202.

[9]  P. Meystre,et al.  Hybrid optomechanical cooling by atomic Λ systems , 2014, 1407.1073.

[10]  G. Carugno,et al.  Optomechanical Rydberg-atom excitation via dynamic Casimir-Polder coupling. , 2014, Physical review letters.

[11]  X. Shao,et al.  Dynamical Casimir–Polder force on a partially dressed atom in a cavity comprising a dielectric , 2014 .

[12]  K. Børkje,et al.  Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency , 2014, 1402.6929.

[13]  Yong Li,et al.  Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction , 2013 .

[14]  E. Martín-Martínez,et al.  Casimir forces on atoms in optical cavities , 2013, 1311.7619.

[15]  H. Kimble,et al.  Trapping atoms using nanoscale quantum vacuum forces , 2013, Nature Communications.

[16]  Zhang-qi Yin,et al.  OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES , 2013, 1308.4503.

[17]  Juan M. Restrepo,et al.  Single-polariton optomechanics. , 2013, Physical review letters.

[18]  S. V. Enk,et al.  Generating robust optical entanglement in weak-coupling optomechanical systems , 2013, 1307.2844.

[19]  Maciej Lewenstein,et al.  Harnessing vacuum forces for quantum sensing of graphene motion. , 2013, Physical review letters.

[20]  Gao-xiang Li,et al.  Generation of squeezed states in a movable mirror via dissipative optomechanical coupling , 2013, 1304.5820.

[21]  T. Kippenberg,et al.  Cavity Optomechanics , 2013, 1303.0733.

[22]  Gao-xiang Li,et al.  Quantum interference effects on ground-state optomechanical cooling , 2013 .

[23]  Ying-Dan Wang,et al.  Reservoir-engineered entanglement in optomechanical systems. , 2013, Physical review letters.

[24]  W. Nie,et al.  Effect of the Casimir force on the entanglement between a levitated nanosphere and cavity modes , 2012 .

[25]  M. Hartmann,et al.  Quantum information processing with nanomechanical qubits. , 2012, Physical review letters.

[26]  M. S. Zubairy,et al.  Entanglement of movable mirrors in a correlated-emission laser , 2012 .

[27]  G J Milburn,et al.  Reversible optical-to-microwave quantum interface. , 2011, Physical review letters.

[28]  S. Deléglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.

[29]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[30]  A. Dantan,et al.  Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency , 2011, 1105.0281.

[31]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[32]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[33]  J. Ignacio Cirac,et al.  Optically Levitating Dielectrics in the Quantum Regime: Theory and Protocols , 2010, 1010.3109.

[34]  T. Zheng,et al.  Dynamical Casimir-Polder force in a one-dimensional cavity with quasimodes , 2010 .

[35]  A S Sørensen,et al.  Optomechanical transducers for long-distance quantum communication. , 2010, Physical review letters.

[36]  G. S. Agarwal,et al.  Electromagnetically induced transparency in mechanical effects of light , 2009, 0911.4157.

[37]  P. Meystre,et al.  Hamiltonian chaos in a coupled BEC-optomechanical-cavity system , 2009, 0909.5465.

[38]  D. E. Chang,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009, Proceedings of the National Academy of Sciences.

[39]  P. Zoller,et al.  Cavity-assisted squeezing of a mechanical oscillator , 2009, 0904.1306.

[40]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[41]  J. Evers,et al.  Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference. , 2009, Physical review letters.

[42]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[43]  P. Tombesi,et al.  Robust entanglement of a micromechanical resonator with output optical fields , 2008, 0806.2045.

[44]  Martin B Plenio,et al.  Steady state entanglement in the mechanical vibrations of two dielectric membranes. , 2008, Physical review letters.

[45]  Yong Li,et al.  Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator , 2008, 0804.4766.

[46]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[47]  Sylvain Gigan,et al.  Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes , 2007, 0705.1728.

[48]  P. Meystre,et al.  Trapping and cooling a mirror to its quantum mechanical ground state. , 2007, Physical review letters.

[49]  T. Kippenberg,et al.  Theory of ground state cooling of a mechanical oscillator using dynamical backaction. , 2007, Physical review letters.

[50]  S. Girvin,et al.  Quantum theory of cavity-assisted sideband cooling of mechanical motion. , 2007, Physical review letters.

[51]  Edith Innerhofer,et al.  An all-optical trap for a gram-scale mirror. , 2006, Physical review letters.

[52]  Dirk Bouwmeester,et al.  Sub-kelvin optical cooling of a micromechanical resonator , 2006, Nature.

[53]  S. Gigan,et al.  Optomechanical entanglement between a movable mirror and a cavity field , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[54]  S. Buhmann,et al.  Dispersion forces in macroscopic quantum electrodynamics , 2006, quant-ph/0608118.

[55]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[56]  S. Buhmann,et al.  Casimir-Polder forces: A nonperturbative approach , 2004, quant-ph/0403128.

[57]  C. P. Sun,et al.  Quasi-spin-wave quantum memories with a dynamical symmetry. , 2002, Physical review letters.

[58]  V. Giovannetti,et al.  Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion , 2000, quant-ph/0006084.

[59]  C. Genet,et al.  Casimir force between metallic mirrors , 1999, quant-ph/0105051.

[60]  Law Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[61]  Kaufman,et al.  Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. , 1987, Physical review. A, General physics.

[62]  Supplementary Information for Nonlinear dynamics and quantum entanglement in optomechanical systems , 2014 .

[63]  Yong‐Chun Liu,et al.  Material for : Dynamic dissipative cooling of a mechanical oscillator in strong-coupling optomechanics , 2013 .