Gate-tuned ambipolar superconductivity with strong pairing interaction in intrinsic gapped monolayer 1T'-MoTe2

Gate tunable two-dimensional (2D) superconductors offer significant advantages when studying superconducting phase transitions. Here, we address superconductivity in exfoliated 1T'-MoTe2 monolayers with an intrinsic band gap of ~7.3 meV using electrostatic doping. Despite large differences in the dispersion of the conduction and the valence bands, superconductivity can be achieved easily for both electrons and holes. The onset of superconductivity occurs near 7-8K for both charge carrier types. This temperature is much higher than in bulk samples. Also the in-plane upper critical field is strongly enhanced and exceeds the BCS Pauli limit in both cases. Gap information is extracted using point-contact spectroscopy. The gap ratio exceeds multiple times the value expected for BCS weak-coupling. All these observations suggest a strong enhancement of the pairing interaction.

[1]  M. Isobe,et al.  Two-Dimensional Quantum Hall Effect and Zero Energy State in Few-Layer ZrTe5 , 2021, Nano letters.

[2]  Jirong Sun,et al.  Electric field control of superconductivity at the LaAlO3/KTaO3(111) interface , 2021, Science.

[3]  L. Balicas,et al.  Enhanced Superconductivity in Monolayer Td-MoTe2. , 2021, Nano letters.

[4]  Kenji Watanabe,et al.  Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene , 2021, Nature.

[5]  S. Lim,et al.  Structural Phase Transition and Interlayer Coupling in Few-Layer 1T' and Td MoTe2. , 2021, ACS nano.

[6]  J. Smet,et al.  Microscopic origin of the Dynes parameter Γ of the LaAlO3–SrTiO3 interface superconductor , 2020 .

[7]  Xu Du,et al.  Bandgap opening in MoTe2 thin flakes induced by surface oxidation , 2020, Frontiers of Physics.

[8]  F. Balakirev,et al.  Detection of Hole Pockets in the Candidate Type-II Weyl Semimetal MoTe_{2} from Shubnikov-de Haas Quantum Oscillations. , 2019, Physical review letters.

[9]  C. Cho,et al.  Giant enhancement of superconductivity in few layers MoTe2 , 2019, Chinese Physics B.

[10]  M. Suda,et al.  An Ambipolar Superconducting Field‐Effect Transistor Operating above Liquid Helium Temperature , 2018, Advanced materials.

[11]  K. T. Law,et al.  Transport evidence of asymmetric spin–orbit coupling in few-layer superconducting 1Td-MoTe2 , 2018, Nature Communications.

[12]  B. Spivak,et al.  Colloquium : Anomalous metals: Failed superconductors , 2017, Reviews of Modern Physics.

[13]  Haixin Chang,et al.  Anomalous oxidation and its effect on electrical transport originating from surface chemical instability in large-area, few-layer 1T'-MoTe2 films. , 2018, Nanoscale.

[14]  M. Knupfer,et al.  Thickness dependent electronic structure of exfoliated mono- and few-layer 1T′−MoTe2 , 2018, Physical Review Materials.

[15]  Ajit C. Balram,et al.  Even denominator fractional quantum Hall states in higher Landau levels of graphene , 2018, Nature Physics.

[16]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[17]  Y. Iwasa,et al.  Quantum phase transitions in highly crystalline two-dimensional superconductors , 2018, Nature Communications.

[18]  Chaofan Zhang,et al.  Electronic structure of monolayer 1T′-MoTe2 grown by molecular beam epitaxy , 2018 .

[19]  Xiaodong Xu,et al.  Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides , 2017, Nature Communications.

[20]  A. Amato,et al.  Signatures of the topological s+− superconducting order parameter in the type-II Weyl semimetal Td-MoTe2 , 2017, Nature Communications.

[21]  Jian Wang,et al.  On the origin of critical temperature enhancement in atomically thin superconductors , 2017, 1703.09850.

[22]  Y. Iwasa,et al.  Highly crystalline 2D superconductors , 2017, 1703.03541.

[23]  Zaiyao Fei,et al.  Edge conduction in monolayer WTe2 , 2016, Nature Physics.

[24]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[25]  C. Felser,et al.  Superconductivity in Weyl semimetal candidate MoTe2 , 2015, Nature Communications.

[26]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, Nature Physics.

[27]  P. Kim,et al.  Nature of the quantum metal in a two-dimensional crystalline superconductor , 2015, Nature Physics.

[28]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[29]  K. T. Law,et al.  Evidence for two-dimensional Ising superconductivity in gated MoS2 , 2015, Science.

[30]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[31]  A. Maeda,et al.  Point-contact Andreev-reflection spectroscopy in Fe(Te,Se) films: multiband superconductivity and electron-boson coupling , 2014, 1412.4667.

[32]  L. Molenkamp,et al.  Induced superconductivity in the quantum spin Hall edge , 2013, Nature Physics.

[33]  K. T. Law,et al.  Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure , 2013, Nature Communications.

[34]  S. Hurand,et al.  Multiple quantum criticality in a two-dimensional superconductor. , 2013, Nature materials.

[35]  M. Tortello,et al.  Directional point-contact Andreev-reflection spectroscopy of Fe-based superconductors: Fermi surface topology, gap symmetry, and electron–boson interaction , 2011, 1109.1509.

[36]  K. Kim,et al.  Pauli-limiting effects in the upper critical fields of a clean LiFeAs single crystal , 2011, 1103.3582.

[37]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[38]  L. Vandersypen,et al.  Bipolar supercurrent in graphene , 2006, Nature.

[39]  T. Vojta TOPICAL REVIEW: Rare region effects at classical, quantum and nonequilibrium phase transitions , 2006, cond-mat/0602312.

[40]  Haviland,et al.  Onset of superconductivity in ultrathin granular metal films. , 1989, Physical review. B, Condensed matter.

[41]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[42]  M. R. Beasley,et al.  Theory of the upper critical field in layered superconductors , 1975 .

[43]  A. B. Harris,et al.  Effect of random defects on the critical behaviour of Ising models , 1974 .

[44]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[45]  Clogston Upper limit for the critical field in hard superconductors. [V/sub 2. 95/Ga, NbâSn,VâSi, V/sub 1. 95/ Ga] , 1962 .

[46]  B. Chandrasekhar A NOTE ON THE MAXIMUM CRITICAL FIELD OF HIGH‐FIELD SUPERCONDUCTORS , 1962 .

[47]  A. Abrikosov The magnetic properties of superconducting alloys , 1957 .