A penalized maximum likelihood approach for m-year precipitation return values estimation with lattice spatial data

Climate models are useful tools for simulating the uncertainties of climate change under different emission scenarios. Regional Climate Models are high resolution climate models which generate high-dimensional spatio-temporal output. To effectively summarize such output without subsampling is important but difficult. One important aspect in climate assessment is the characteristic of extreme precipitation events and m-year precipitation return values are often computed as the summary statistics of the extreme precipitation events. In this paper we present a Penalized Maximum Likelihood (PML) method to estimate precipitation return values with Generalized Extreme Value distribution (GEV). With PML models, we have a different set of GEV parameters at each spatial location and we add smoothness penalties on parameters based on prior belief that the neighboring parameters should vary smoothly. The penalization terms are selected by data-driven approaches. We evaluate the uncertainty of the estimates using pointwise standard deviations.

[1]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[2]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .

[3]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[4]  Stuart G. Coles,et al.  Regional Modelling of Extreme Storms Via Max‐Stable Processes , 1993 .

[5]  Robert Gray,et al.  Flexible Methods for Analyzing Survival Data Using Splines, with Applications to Breast Cancer Prognosis , 1992 .

[6]  D. Commenges,et al.  Maximum Penalized Likelihood Estimation in a Gamma-Frailty Model , 2003, Lifetime data analysis.

[7]  Jesper Heile Christensen,et al.  Daily precipitation statistics in regional climate models: Evaluation and intercomparison for the European Alps , 2003 .

[8]  J. Stedinger,et al.  Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data , 2000 .

[9]  Stephan R. Sain,et al.  Spatial Hierarchical Modeling of Precipitation Extremes From a Regional Climate Model , 2008 .

[10]  Stephan R. Sain,et al.  A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling , 2010 .

[11]  Alan E. Gelfand,et al.  Hierarchical modeling for extreme values observed over space and time , 2009, Environmental and Ecological Statistics.

[12]  Alan E. Gelfand,et al.  Continuous Spatial Process Models for Spatial Extreme Values , 2010 .

[13]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[14]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[15]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[16]  A. Davison,et al.  Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.

[17]  Richard G. Jones,et al.  A Regional Climate Change Assessment Program for North America , 2009 .

[18]  S. Coles,et al.  Likelihood-Based Inference for Extreme Value Models , 1999 .

[19]  C. Zhou,et al.  On spatial extremes: With application to a rainfall problem , 2008, 0807.4092.