Synchronization of uncertain fractional order chaotic systems via adaptive interval type-2 fuzzy sliding mode control

In this paper, a novel adaptive interval type-2 fuzzy sliding mode control (AITFSMC) is proposed to handle high level uncertainties facing the fuzzy logic controller (FLC) in dynamic fractional order chaotic systems such as uncertainties in inputs to the FLC, uncertainties in control outputs, linguistic uncertainties and uncertainties associated with the noisy training data. Based on the learning algorithm combining Lyapunov approach and sliding mode control, free parameters of the AITSMC can be tuned on line by output feedback control law and adaptive law to synchronize two different uncertain fractional order chaotic systems. Meanwhile, the chattering phenomena in the control efforts can be reduced. During the design procedure, not only the stability and robustness can be guaranteed but also the external disturbance on the synchronization error can be attenuated. The numerical simulation is performed to illustrate the effectiveness of the proposed control strategy.

[1]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[2]  Tsung-Chih Lin,et al.  Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems , 2009, Eng. Appl. Artif. Intell..

[3]  Naser Pariz,et al.  A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter , 2009 .

[4]  Ivo Petras,et al.  A note on the fractional-order Chua’s system , 2008 .

[5]  Shangbo Zhou,et al.  Chaos control and synchronization in a fractional neuron network system , 2008 .

[6]  B. West Fractional Calculus in Bioengineering , 2007 .

[7]  Ivo Petrás,et al.  A Note on the Fractional-Order Cellular Neural Networks , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[8]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[9]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[10]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[11]  Weihua Deng,et al.  Synchronization of Chaotic Fractional Chen System , 2005 .

[12]  Juebang Yu,et al.  Chaos in the fractional order periodically forced complex Duffing’s oscillators , 2005 .

[13]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[14]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[15]  Chi-Hsu Wang,et al.  Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN) , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[17]  Guanrong Chen,et al.  A Note on Hopf bifurcation in Chen's System , 2003, Int. J. Bifurc. Chaos.

[18]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[19]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[20]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[21]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[22]  P. Arena,et al.  Bifurcation and Chaos in Noninteger Order Cellular Neural Networks , 1998 .

[23]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[24]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[25]  R. Palm,et al.  Sliding mode fuzzy control , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[26]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[27]  J. J. Slotine,et al.  Tracking control of non-linear systems using sliding surfaces with application to robot manipulators , 1983, 1983 American Control Conference.

[28]  V. Utkin Variable structure systems with sliding modes , 1977 .

[29]  Tsung-Chih Lin,et al.  ROBUST ADAPTIVE TRACKING CONTROL OF MULTIVARIABLE NONLINEAR SYSTEMS BASED ON INTERVAL TYPE-2 FUZZY APPROACH , 2010 .

[30]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .