Linear bilevel programming with interval coefficients

In this paper, we address linear bilevel programs when the coefficients of both objective functions are interval numbers. The focus is on the optimal value range problem which consists of computing the best and worst optimal objective function values and determining the settings of the interval coefficients which provide these values. We prove by examples that, in general, there is no precise way of systematizing the specific values of the interval coefficients that can be used to compute the best and worst possible optimal solutions. Taking into account the properties of linear bilevel problems, we prove that these two optimal solutions occur at extreme points of the polyhedron defined by the common constraints. Moreover, we develop two algorithms based on ranking extreme points that allow us to compute them as well as determining settings of the interval coefficients which provide the optimal value range.

[1]  Milan Hladík Optimal value range in interval linear programming , 2009, Fuzzy Optim. Decis. Mak..

[2]  Le Dung Muu,et al.  A Global Optimization Method for Solving Convex Quadratic Bilevel Programming Problems , 2003, J. Glob. Optim..

[3]  S. R. Arora,et al.  Optimality Conditions and an Algorithm for Linear-Quadratic Bilevel Programming , 2001 .

[4]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[5]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[6]  Patrice Marcotte,et al.  An overview of bilevel optimization , 2007, Ann. Oper. Res..

[7]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications , 1998 .

[8]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[9]  Masahiro Inuiguchi,et al.  Minimax regret solution to linear programming problems with an interval objective function , 1995 .

[10]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[11]  M. Hladík Optimal value bounds in nonlinear programming with interval data , 2011 .

[12]  Jonathan F. Bard,et al.  Practical Bilevel Optimization: Algorithms and Applications (Nonconvex Optimization and Its Applications) , 2006 .

[13]  J. Bard,et al.  Nondifferentiable and Two-Level Mathematical Programming , 1996 .

[14]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[15]  Wayne F. Bialas,et al.  On two-level optimization , 1982 .

[16]  Ralph E. Steuer Algorithms for Linear Programming Problems with Interval Objective Function Coefficients , 1981, Math. Oper. Res..

[17]  Stephan Dempe,et al.  Bilevel problems over polyhedra with extreme point optimal solutions , 2012, J. Glob. Optim..

[18]  Jean Bosco Etoa Etoa Solving convex quadratic bilevel programming problems using an enumeration sequential quadratic programming algorithm , 2010, J. Glob. Optim..

[19]  Hanif D. Sherali,et al.  Linear programming and network flows (2nd ed.) , 1990 .

[20]  Milan Hladík,et al.  Generalized linear fractional programming under interval uncertainty , 2010, Eur. J. Oper. Res..

[21]  L. N. Vicente,et al.  Descent approaches for quadratic bilevel programming , 1994 .

[22]  Tong Shaocheng,et al.  Interval number and fuzzy number linear programmings , 1994 .

[23]  John W. Chinneck,et al.  Linear programming with interval coefficients , 2000, J. Oper. Res. Soc..

[24]  Manuel Laguna,et al.  Minimising the maximum relative regret for linear programmes with interval objective function coefficients , 1999, J. Oper. Res. Soc..

[25]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..