Confocal microscopy of colloids

Colloids have increasingly been used to characterize or mimic many aspects of atomic and molecular systems. With confocal microscopy these colloidal particles can be tracked spatially in three dimensions with great precision over large time scales. This review discusses equilibrium phases such as crystals and liquids, and non-equilibrium phases such as glasses and gels. The phases that form depend strongly on the type of particle interaction that dominates. Hard-sphere-like colloids are the simplest, and interactions such as the attractive depletion force and electrostatic repulsion result in more non-trivial phases which can better model molecular materials. Furthermore, shearing or otherwise externally forcing these colloids while under microscopic observation helps connect the microscopic particle dynamics to the macroscopic flow behaviour. Finally, directions of future research in this field are discussed.

[1]  G. S. Kino,et al.  Real‐time confocal scanning optical microscope , 1988 .

[2]  A. Dinsmore,et al.  Measurement of Forces Inside a Three-Dimensional Pile of Frictionless Droplets , 2006, Science.

[3]  D. Weitz,et al.  Strain Hardening of Fractal Colloidal Gels , 1999 .

[4]  David A Weitz,et al.  Fluids of clusters in attractive colloids. , 2006, Physical review letters.

[5]  A. Yethiraj,et al.  Nature of an electric-field-induced colloidal martensitic transition. , 2004, Physical review letters.

[6]  S. Rice,et al.  Experimental observations of non-Gaussian behavior and stringlike cooperative dynamics in concentrated quasi-two-dimensional colloidal liquids. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Prasad,et al.  Entropically driven colloidal crystallization on patterned surfaces , 2000, Physical review letters.

[8]  A. Blaaderen,et al.  A colloidal model system with an interaction tunable from hard sphere to soft and dipolar , 2003, Nature.

[9]  L. Cipelletti,et al.  Jamming phase diagram for attractive particles , 2001, Nature.

[10]  W. Kob Supercooled Liquids and Glasses , 1999, cond-mat/9911023.

[11]  J. Hoogenboom,et al.  A real-space analysis of colloidal crystallization in a gravitational field at a flat bottom wall , 2003 .

[12]  K. Dawson The glass paradigm for colloidal glasses, gels, and other arrested states driven by attractive interactions , 2002 .

[13]  Tong,et al.  Depletion interactions in colloid-polymer mixtures. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  A. van Blaaderen,et al.  A new colloidal model system to study long-range interactions quantitatively in real space , 2003 .

[15]  M. Solomon,et al.  Direct visualization of colloidal rod assembly by confocal microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[16]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[17]  Eric Dickinson,et al.  Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[18]  D A Weitz,et al.  Properties of cage rearrangements observed near the colloidal glass transition. , 2002, Physical review letters.

[19]  Pusey,et al.  Observation of a glass transition in suspensions of spherical colloidal particles. , 1987, Physical review letters.

[20]  Jan K. G. Dhont,et al.  A time resolved static light scattering study on nucleation and crystallization in a colloidal system , 1992 .

[21]  Daan Frenkel,et al.  Numerical calculation of the rate of homogeneous gas–liquid nucleation in a Lennard-Jones system , 1999 .

[22]  C. V. van Kats,et al.  Synthesis of colloidal silica dumbbells. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[23]  K. Kawasaki,et al.  The effects of size polydispersity in nearly hard sphere colloids , 1993 .

[24]  H. Lekkerkerker,et al.  Devitrification of colloidal glasses in real space. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  David A. Weitz,et al.  Visualizing dislocation nucleation by indenting colloidal crystals , 2006, Nature.

[26]  Hernán A. Makse,et al.  Measuring the distribution of interdroplet forces in a compressed emulsion system , 2003 .

[27]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[28]  P. Pusey,et al.  Two-colour Dynamic Light Scattering , 1995 .

[29]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[30]  R. J. Speedy The hard sphere glass transition , 1998 .

[31]  C. Angell Ten questions on glassformers, and a real space`excitations'model with some answers on fragility and phase transitions , 2000 .

[32]  Underwood,et al.  Nonergodicity parameters of colloidal glasses. , 1991, Physical review letters.

[33]  A. Vrij,et al.  Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres , 1992 .

[34]  Bartlett,et al.  Superlattice formation in mixtures of hard-sphere colloids , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[36]  P. Pusey,et al.  Dynamics of hard spherical colloids from the fluid to the glass , 1991 .

[37]  Eric R. Weeks,et al.  Correlations of Structure and Dynamics in an Aging Colloidal Glass , 2006 .

[38]  F. Zernike Phase contrast, a new method for the microscopic observation of transparent objects , 1942 .

[39]  W. Poon,et al.  Conventional optical microscopy of colloidal suspensions. , 2001, Advances in colloid and interface science.

[40]  D. Weitz,et al.  Direct imaging of three-dimensional structure and topology of colloidal gels , 2002 .

[41]  D. Aarts The interface in demixed colloid-polymer systems: wetting, waves and droplets. , 2006, Soft matter.

[42]  D. Aarts Capillary length in a fluid-fluid demixed colloid-polymer mixture. , 2005, The journal of physical chemistry. B.

[43]  Poon,et al.  Phase behavior of a model colloid-polymer mixture. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Andrew Schofield,et al.  Real-Space Imaging of Nucleation and Growth in Colloidal Crystallization , 2001, Science.

[45]  P. Pusey,et al.  'Unsticking' a colloidal glass, and sticking it again , 2003 .

[46]  J. A. Hernando Density functional theory in the canonical ensemble: I. General formalism , 2001 .

[47]  M. Solomon,et al.  Direct visualization of flow-induced microstructure in dense colloidal gels by confocal laser scanning microscopy , 2003 .

[48]  J. Lewis,et al.  Interparticle interactions and direct imaging of colloidal phases assembled from microsphere-nanoparticle mixtures. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[49]  H. Lekkerkerker,et al.  Direct observation of crystallization and aggregation in a phase-separating colloid-polymer suspension. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  G. Grübel,et al.  Dynamics and correlations in magnetic colloidal systems studied by X-ray photon correlation spectroscopy , 2001 .

[51]  David A. Weitz,et al.  Visualization of Dislocation Dynamics in Colloidal Crystals , 2004, Science.

[52]  Hernán A Makse,et al.  3D bulk measurements of the force distribution in a compressed emulsion system. , 2003, Faraday discussions.

[53]  Richard A. L. Jones Soft Condensed Matter , 2002 .

[54]  J. Lewis,et al.  Nanoparticle halos: A new colloid stabilization mechanism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. Kegel,et al.  Monodisperse core-shell poly(methyl methacrylate) latex colloids , 2003 .

[56]  G. Grest,et al.  Phase diagram and dynamics of Yukawa systems , 1988 .

[57]  M. Dijkstra,et al.  CuAu structure in the restricted primitive model and oppositely charged colloids. , 2006, Physical review letters.

[58]  D. Weitz,et al.  Diffusing wave spectroscopy. , 1988, Physical review letters.

[59]  W. Kegel,et al.  Gravity-induced aging in glasses of colloidal hard spheres. , 2004, Physical review letters.

[60]  L. V. Woodcock GLASS TRANSITION IN THE HARD‐SPHERE MODEL AND KAUZMANN'S PARADOX * , 1981 .

[61]  Leslie V. Woodcock,et al.  Glass transition in the hard-sphere model , 1976 .

[62]  David J. Pine,et al.  Dynamics and coarsening in three-dimensional foams , 1990 .

[63]  H. Lekkerkerker,et al.  Interfacial dynamics in demixing systems with ultralow interfacial tension , 2005 .

[64]  W. Meyer,et al.  Crystallization of hard-sphere colloids in microgravity , 1997, Nature.

[65]  David R. Nelson,et al.  Defects and geometry in condensed matter physics , 2002 .

[66]  Kenneth R. Spring,et al.  Video Microscopy: The Fundamentals , 1986 .

[67]  J. Crocker,et al.  ENTROPIC ATTRACTION AND REPULSION IN BINARY COLLOIDS PROBED WITH A LINE OPTICAL TWEEZER , 1999 .

[68]  H. Lekkerkerker,et al.  Preparation of monodisperse, fluorescent PMMA-latex colloids by dispersion polymerization. , 2002, Journal of colloid and interface science.

[69]  W. Kegel,et al.  Hard sphere crystal nucleation and growth near large spherical impurities , 2005 .

[70]  D. W. Noid Studies in Molecular Dynamics , 1976 .

[71]  A. Blaaderen,et al.  Monodisperse Colloidal Suspensions of Silica and PMMA Spheres as Model Electrorheological Fluids , 2002 .

[72]  D. Weitz,et al.  Scaling of the viscoelasticity of weakly attractive particles , 2000, Physical review letters.

[73]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[74]  Giglio,et al.  Spinodal-type dynamics in fractal aggregation of colloidal clusters. , 1992, Physical review letters.

[75]  B. Ackerson,et al.  Microstructure-dependent viscosity in concentrated suspensions of soft spheres , 1997 .

[76]  M Fuchs,et al.  Multiple Glassy States in a Simple Model System , 2002, Science.

[77]  See-Eng Phan,et al.  Nature of the divergence in low shear viscosity of colloidal hard-sphere dispersions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Stephen R. Williams,et al.  Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition , 1998 .

[79]  S. Nagel,et al.  Supercooled Liquids and Glasses , 1996 .

[80]  D. Weitz,et al.  Diffusing-wave spectroscopy : dynamic light scattering in the multiple scattering limit , 1990 .

[81]  D. V. Schroeder,et al.  An Introduction to Thermal Physics , 2000 .

[82]  J. Lewis,et al.  Nanoparticle Engineering of Complex Fluid Behavior , 2001 .

[83]  J. D. Bernal,et al.  The Bakerian Lecture, 1962 The structure of liquids , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[84]  P. Pusey,et al.  Colloidal glasses under shear strain , 1998 .

[85]  I. Cohen,et al.  Shear-induced configurations of confined colloidal suspensions. , 2004, Physical review letters.

[86]  Structure of electrorheological fluids , 2000, cond-mat/0001348.

[87]  M. Drewel,et al.  Suppression of multiple scattering in photon correlation spectroscopy , 1990 .

[88]  D. Hibberd,et al.  Quantitative imaging of aggregated emulsions. , 2006, Langmuir.

[89]  Tong,et al.  Neutron scattering study of depletion interactions in a colloid-polymer mixture. , 1996, Physical review letters.

[90]  Dirk G. A. L. Aarts,et al.  Direct Visual Observation of Thermal Capillary Waves , 2004, Science.

[91]  F. Stillinger,et al.  A Topographic View of Supercooled Liquids and Glass Formation , 1995, Science.

[92]  H. Lekkerkerker,et al.  Colloidal Hard-Sphere Crystal Growth Frustrated by Large Spherical Impurities , 2005, Science.

[93]  A. Campbell,et al.  Fluorescent Hard-Sphere Polymer Colloids for Confocal Microscopy , 2002 .

[94]  B. F. Rasmussen,et al.  A Topographic View of Supercooled Liquids and Glass Formation , 2005 .

[95]  S. Paddock,et al.  Confocal laser scanning microscopy. , 1999, BioTechniques.

[96]  Paul Bartlett,et al.  Dynamical arrest in attractive colloids: the effect of long-range repulsion. , 2005, Physical review letters.

[97]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[98]  I. Snook,et al.  Molecular dynamics study of the stability of the hard sphere glass. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  L. Cipelletti,et al.  Rideal lecture. Universal features of the fluid to solid transition for attractive colloidal particles. , 2003, Faraday discussions.

[100]  D. Weitz,et al.  Direct imaging of repulsive and attractive colloidal glasses. , 2006, The Journal of chemical physics.

[101]  Fumio Oosawa,et al.  Interaction between particles suspended in solutions of macromolecules , 1958 .

[102]  Clemens Bechinger,et al.  Like-charge attraction in confinement: myth or truth? , 2006, Soft matter.

[103]  Hugo Bissig,et al.  Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics , 2003 .

[104]  J. D. Bernal,et al.  Geometry of the Structure of Monatomic Liquids , 1960, Nature.

[105]  Video microscopy of colloidal suspensions and colloidal crystals , 2002, cond-mat/0204507.

[106]  J. Lewis,et al.  Phase behavior and 3D structure of strongly attractive microsphere-nanoparticle mixtures. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[107]  E. Bartsch,et al.  Self-Diffusion in Concentrated Colloid Suspensions Studied by Digital Video Microscopy of Core−Shell Tracer Particles , 1998 .

[108]  M. Solomon,et al.  Stacking fault structure in shear-induced colloidal crystallization. , 2006, The Journal of chemical physics.

[109]  Priya Varadan,et al.  Direct Visualization of Long-Range Heterogeneous Structure in Dense Colloidal Gels , 2003 .

[110]  P. Pusey,et al.  Phase behaviour of concentrated suspensions of nearly hard colloidal spheres , 1986, Nature.

[111]  Fleming,et al.  X-Ray photon correlation spectroscopy study of Brownian motion of gold colloids in glycerol. , 1995, Physical review letters.

[112]  P. Pusey,et al.  Multiple scattering suppression in static light scattering by cross-correlation spectroscopy. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[113]  B. Alder,et al.  Studies in Molecular Dynamics. VIII. The Transport Coefficients for a Hard-Sphere Fluid , 1970 .

[114]  Alfons van Blaaderen,et al.  Real-Space Structure of Colloidal Hard-Sphere Glasses , 1995, Science.

[115]  W. Kegel,et al.  Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions , 2000, Science.

[116]  C. Patrick Royall,et al.  Ionic colloidal crystals of oppositely charged particles , 2005, Nature.

[117]  Yoshida,et al.  Localized ordered structure in polymer latex suspensions as studied by a confocal laser scanning microscope. , 1991, Physical review. B, Condensed matter.

[118]  Witten,et al.  Universal kinetics in reaction-limited aggregation. , 1987, Physical review letters.

[119]  D A Weitz,et al.  Universal aging features in the restructuring of fractal colloidal gels. , 2000, Physical review letters.

[120]  Subdiffusion and the cage effect studied near the colloidal glass transition , 2001, cond-mat/0111073.

[121]  V. Prasad,et al.  Glasslike kinetic arrest at the colloidal-gelation transition. , 2001, Physical review letters.

[122]  Bruce J. Ackerson,et al.  Shear induced order and shear processing of model hard sphere suspensions , 1990 .

[123]  Experimental studies of the flow of concentrated hard sphere suspensions into a constriction , 2006 .

[124]  D. Weitz,et al.  Weak correlations between local density and dynamics near the glass transition. , 2005, The journal of physical chemistry. B.

[125]  M D Ediger,et al.  Spatially heterogeneous dynamics in supercooled liquids. , 2003, Annual review of physical chemistry.

[126]  W. Kegel,et al.  Dynamic broadening of the crystal-fluid interface of colloidal hard spheres. , 2006, Physical review letters.

[127]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[128]  S. Henderson,et al.  Metastability and Crystallization in Suspensions of Mixtures of Hard Spheres , 1998 .

[129]  Bartlett,et al.  Superlattice formation in binary mixtures of hard-sphere colloids. , 1992, Physical review letters.

[130]  R. Ottewill,et al.  Small-angle neutron-scattering studies on ordered polymer colloid dispersions , 1990 .

[131]  J. Hoogenboom,et al.  Shape-induced frustration of hexagonal order in polyhedral colloids. , 2006, Physical review letters.

[132]  Paul Bartlett,et al.  Three-dimensional binary superlattices of oppositely charged colloids. , 2005, Physical review letters.

[133]  Pusey,et al.  Dynamic light-scattering study of the glass transition in a colloidal suspension. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[134]  W. Gotze,et al.  Dynamics of supercooled liquids and the glass transition , 1984 .

[135]  I. Cohen,et al.  Slip, yield, and bands in colloidal crystals under oscillatory shear. , 2006, Physical review letters.

[136]  Dirk L. J. Vossen,et al.  Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions , 2004 .

[137]  Schofield,et al.  Three-dimensional direct imaging of structural relaxation near the colloidal glass transition , 2000, Science.

[138]  James W. Goodwin,et al.  The preparation of poly(methyl methacrylate) latices in non-aqueous media , 1986 .

[139]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[140]  W. Kegel,et al.  Direct measurement of the free energy by optical microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[141]  T. Lubensky,et al.  Attractions between hard colloidal spheres in semiflexible polymer solutions , 2000 .

[142]  P. Pusey,et al.  Direct observation of oscillatory-shear-induced order in colloidal suspensions , 1998 .

[143]  B. Ackerson,et al.  Shear-induced order in suspensions of hard spheres. , 1988, Physical review letters.

[144]  Jan Groenewold,et al.  Anomalously large equilibrium clusters of colloids , 2001 .

[145]  W. Gotze,et al.  Relaxation processes in supercooled liquids , 1992 .

[146]  D A Weitz,et al.  Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[147]  Konishi,et al.  Structural study of silica particle dispersions by ultra-small-angle x-ray scattering. , 1995, Physical Review B (Condensed Matter).

[148]  V. Prasad,et al.  Three-dimensional confocal microscopy of colloids. , 2001, Applied optics.

[149]  D. Derks,et al.  Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell , 2004 .

[150]  W. Kegel,et al.  Colloidal cluster phases, gelation and nuclear matter , 2004 .

[151]  Direct visualization of ageing in colloidal glasses , 2002, cond-mat/0209148.

[152]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[153]  D. Frenkel,et al.  Prediction of absolute crystal-nucleation rate in hard-sphere colloids , 2001, Nature.

[154]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .

[155]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[156]  J. D. Bernal,et al.  A Geometrical Approach to the Structure Of Liquids , 1959, Nature.

[157]  J. S. Pedersen,et al.  Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. , 2004, The Journal of chemical physics.

[158]  Mason,et al.  Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. , 1995, Physical review letters.

[159]  Bartlett,et al.  Structure of crystals of hard colloidal spheres. , 1989, Physical review letters.

[160]  C. Zukoski,et al.  The rheology of charge stabilized silica suspensions , 1997 .

[161]  Klein,et al.  Universal reaction-limited colloid aggregation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[162]  D. Weitz,et al.  Fractal structures formed by kinetic aggregation of aqueous gold colloids , 1984 .

[163]  S. Egelhaaf,et al.  Clusters and gels in systems of sticky particles , 2004 .