Revealing hidden genetic diagnoses in the ocular anterior segment disorders

[1]  M. Cowley,et al.  Revealing hidden genetic diagnoses in the ocular anterior segment disorders , 2020, Genetics in Medicine.

[2]  P. Calvas,et al.  Novel PXDN biallelic variants in patients with microphthalmia and anterior segment dysgenesis , 2020, Journal of Human Genetics.

[3]  B. Jones,et al.  Optic cup morphogenesis requires neural crest-mediated basement membrane assembly. , 2020, Development.

[4]  B. Jones,et al.  Optic cup morphogenesis requires neural crest-mediated basement membrane assembly , 2020, Development.

[5]  F. Alkuraya,et al.  Congenital glaucoma and CYP1B1: an old story revisited , 2019, Human Genetics.

[6]  D. Werring,et al.  Neurologic phenotypes associated with COL4A1/2 mutations , 2018, Neurology.

[7]  J. Grigg,et al.  Phenotype–genotype correlations and emerging pathways in ocular anterior segment dysgenesis , 2018, Human Genetics.

[8]  C. Villanueva-Mendoza,et al.  Identification of novel pathogenic variants and novel gene-phenotype correlations in Mexican subjects with microphthalmia and/or anophthalmia by next-generation sequencing , 2018, Journal of Human Genetics.

[9]  S. Kingsmore,et al.  Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases , 2018, npj Genomic Medicine.

[10]  A. Mansour,et al.  Genetic investigation of 93 families with microphthalmia or posterior microphthalmos , 2018, Clinical genetics.

[11]  M. Geiszt,et al.  Peroxidasin-mediated crosslinking of collagen IV is independent of NADPH oxidases , 2018, Redox biology.

[12]  Sarah Wordsworth,et al.  Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature , 2018, Genetics in medicine : official journal of the American College of Medical Genetics.

[13]  B. Bennetts,et al.  New mutations in GJA8 expand the phenotype to include total sclerocornea , 2018, Clinical genetics.

[14]  MA Katharina Schwarze BSc,et al.  Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature , 2018, Genetics in Medicine.

[15]  M. Dinger,et al.  NMNAT1 variants cause cone and cone-rod dystrophy , 2018, European Journal of Human Genetics.

[16]  M. Kiss,et al.  Genetic dissection of anterior segment dysgenesis caused by a Col4a1 mutation in mouse , 2017, Disease Models & Mechanisms.

[17]  D. Reinhardt,et al.  Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease , 2017, Scientific Reports.

[18]  D. Gerrelli,et al.  Mutations in CPAMD8 Cause a Unique Form of Autosomal-Recessive Anterior Segment Dysgenesis , 2016, American journal of human genetics.

[19]  Mark T. Handley,et al.  A Restricted Repertoire of De Novo Mutations in ITPR1 Cause Gillespie Syndrome with Evidence for Dominant-Negative Effect , 2016, American journal of human genetics.

[20]  E. Elahi,et al.  The p.Gly61Glu Mutation in CYP1B1 Affects the Extracellular Matrix in Glaucoma Patients , 2016, Ophthalmic Research.

[21]  E. Geisert,et al.  Assessment of PAX6 alleles in 66 families with aniridia , 2016, Clinical genetics.

[22]  K. Holman,et al.  Sporadic and Familial Congenital Cataracts: Mutational Spectrum and New Diagnoses Using Next‐Generation Sequencing , 2016, Human mutation.

[23]  Bale,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[24]  L. Teixeira,et al.  Ultrastructural Abnormalities of the Trabecular Meshwork Extracellular Matrix in Cyp1b1-Deficient Mice , 2015, Veterinary pathology.

[25]  L. D. de Vries,et al.  The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature , 2015, Genetics in Medicine.

[26]  P. Kwok,et al.  Novel mutations in PXDN cause microphthalmia and anterior segment dysgenesis , 2014, European Journal of Human Genetics.

[27]  K. Kwan Coming into focus: The role of extracellular matrix in vertebrate optic cup morphogenesis , 2014, Developmental dynamics : an official publication of the American Association of Anatomists.

[28]  K. David,et al.  Whole exome sequence analysis of Peters anomaly , 2014, Human Genetics.

[29]  H. Fuchs,et al.  Peroxidasin is essential for eye development in the mouse , 2014, Human molecular genetics.

[30]  C. Simons,et al.  Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1 , 2013, European Journal of Human Genetics.

[31]  D. Mackey,et al.  A puzzle over several decades: eye anomalies with FRAS1 and STRA6 mutations in the same family , 2013, Clinical genetics.

[32]  K. Gripp,et al.  Cardiac anomalies in Axenfeld–Rieger syndrome due to a novel FOXC1 mutation , 2013, American journal of medical genetics. Part A.

[33]  U. Broeckel,et al.  PITX2 and FOXC1 spectrum of mutations in ocular syndromes , 2012, European Journal of Human Genetics.

[34]  L. Reis,et al.  Genetics of anterior segment dysgenesis disorders , 2011, Current opinion in ophthalmology.

[35]  T. de Ravel,et al.  Expanding the spectrum of FOXC1 and PITX2 mutations and copy number changes in patients with anterior segment malformations. , 2011, Investigative ophthalmology & visual science.

[36]  Brian C. Jackson,et al.  Update of human and mouse forkhead box (FOX) gene families , 2010, Human Genomics.

[37]  F. Alkuraya,et al.  Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. , 2009, American journal of human genetics.

[38]  Alexander G Bassuk,et al.  FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation , 2009, Nature Genetics.

[39]  I. Tzoulaki,et al.  PAX6 mutations: genotype-phenotype correlations , 2005, BMC Genetics.

[40]  K. Xia,et al.  Mutation in PITX2 is associated with ring dermoid of the cornea , 2004, Journal of Medical Genetics.

[41]  M. Walter,et al.  The wing 2 region of the FOXC1 forkhead domain is necessary for normal DNA-binding and transactivation functions. , 2004, Investigative ophthalmology & visual science.

[42]  M. Walter,et al.  Phenotypic heterogeneity of CYP1B1: mutations in a patient with Peters' anomaly , 2001, Journal of medical genetics.

[43]  S. Burley,et al.  Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5 , 1993, Nature.