Convergence analysis of the Hopmoc method
暂无分享,去创建一个
Sanderson L. Gonzaga de Oliveira | Mauricio Kischinhevsky | Simoni R. de Oliveira | M. Kischinhevsky | S. L. G. D. Oliveira | S. Oliveira
[1] Jim Douglas,et al. Numerical solution of two‐dimensional heat‐flow problems , 1955 .
[2] Willem Hundsdorfer,et al. Linear stability of the hopscotch scheme , 1989 .
[3] Jr. Jim Douglas. Alternating direction iteration for mildly nonlinear elliptic difference equations , 1961 .
[4] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[5] Paul Gordon,et al. Nonsymmetric Difference Equations , 1965 .
[6] J. J. Douglas. Alternating direction methods for three space variables , 1962 .
[7] Robert Todd Gregory,et al. A collection of matrices for testing computational algorithms , 1969 .
[8] T. F. Russell,et al. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .
[9] J. Douglas,et al. A general formulation of alternating direction methods , 1964 .
[10] A. R. Gourlay,et al. Hopscotch: a Fast Second-order Partial Differential Equation Solver , 1970 .
[11] T. F. Russell,et al. NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .
[12] J. J. Douglas. On the Numerical Integration of $\frac{\partial ^2 u}{\partial x^2 } + \frac{\partial ^2 u}{\partial y^2 } = \frac{\partial u}{\partial t}$ by Implicit Methods , 1955 .
[13] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[14] Dean G. Duffy. Unsteady viscous flow around a circular cylinder found by the hopscotch scheme on a vector processing machine , 1990 .