Adaptive coupled synchronization among multi-Lorenz systems family ☆

In this paper, the adaptive synchronization method of coupled system is proposed for multi-Lorenz systems family. This method can avoid estimating the value of coupling coefficient. Strict theoretical proofs are given. And we derived a sufficient condition of synchronization for a general unidirectional coupling ring network with N identical Lorenz systems. The network is coupled through the first state variable of each equation. In fact, the whole unidirectional coupling network will synchronize by adding only one adaptive feedback gain equation. Numerical simulations show the effectiveness of the methods.

[1]  Jinhu Lu,et al.  Chaos synchronization between linearly coupled chaotic systems , 2002 .

[2]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[3]  F. Ohle,et al.  Adaptive control of chaotic systems , 1990 .

[4]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[5]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[6]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[7]  Jun-an Lu,et al.  Synchronization of a unified chaotic system and the application in secure communication , 2002 .

[8]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[9]  Xiaoqun Wu,et al.  Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems , 2005 .

[10]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[11]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[12]  Jinhu Lu,et al.  Controlling uncertain Lü system using linear feedback , 2003 .

[13]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[14]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[15]  Guanrong Chen,et al.  Synchronization stability of three chaotic systems with linear coupling , 2002 .

[16]  Guanrong Chen,et al.  Estimating the bounds for the Lorenz family of chaotic systems , 2005 .

[17]  A universal unfolding of the Lorenz system , 2004 .

[18]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[19]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.