Particle Clustering in Photocurable Nanocomposites: Dependence of Curing Kinetics and Viscoelastic Properties

The aim of this article is to investigate the effect of nanoparticle clustering on the mobility of nanoparticles in nanocom- posites, using spectroscopic methods (Brillouin and Raman). Special attention is paid to the effect of particle clustering on photocur- ing kinetics. The model system was poly(2-hydroxyethyl acrylate) filled with fumed nanosilica in concentration range encompassing the percolation threshold. Results obtained from Brillouin spectroscopy show substantial changes in the sound velocity and the attenuation coefficient with increasing filler content. The damping of acoustic waves reaches the maximum at the percolation thresh- old (� 15 wt %), which is related to changes in the mechanism of acoustic wave propagation. The formation of the cocontinuous silica phase strongly affects the curing kinetics of the monomer/silica system: the polymerization rate is the highest at a silica content corresponding to the percolation threshold. These results correlate well with the results of AFM surface roughness analysis. V C 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013, 000, 39895.

[1]  G. Filippone,et al.  A Unifying Approach for the Linear Viscoelasticity of Polymer Nanocomposites , 2012 .

[2]  W. Zhong,et al.  Dependence of Dielectric Properties and Percolative Behavior on Phase Separation Structure Induced by Heterogeneous Carbon Nanofiber Distribution in Polymer Blend Nanocomposites , 2011 .

[3]  E. Andrzejewska,et al.  Brillouin study of photopolymerization process of two-monomer systems. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[4]  Hua Deng,et al.  Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites , 2011 .

[5]  J. G. Ribelles,et al.  Water sorption characteristics of poly(2‐hydroxyethyl acrylate)/silica nanocomposite hydrogels , 2011 .

[6]  H. Gojzewski,et al.  Monomer/modified nanosilica systems: Photopolymerization kinetics and composite characterization , 2011 .

[7]  Haksoo Han,et al.  Preparation and properties of poly(urethane acrylate) films for ultraviolet‐curable coatings , 2010 .

[8]  E. Andrzejewska,et al.  Viscosity Effects in the Photopolymerization of Two-Monomer Systems , 2010 .

[9]  S. Pratsinis,et al.  Flame-made nanoparticles for nanocomposites , 2010 .

[10]  T. Tanaka,et al.  Nanocomposites-a review of electrical treeing and breakdown , 2009, IEEE Electrical Insulation Magazine.

[11]  J. Jestin,et al.  Well-Dispersed Fractal Aggregates as Filler in Polymer−Silica Nanocomposites: Long-Range Effects in Rheology , 2009, 0903.5380.

[12]  E. Andrzejewska,et al.  New aspects of viscosity effects on the photopolymerization kinetics of the 2,2‐bis[4‐(2‐hydroxymethacryloxypropoxy)phenyl]propane/triethylene glycol dimethacrylate monomer system , 2008 .

[13]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[14]  J. G. Ribelles,et al.  Properties of poly(2-hydroxyethyl acrylate)-silica nanocomposites obtained by the sol–gel process , 2008 .

[15]  R. Bogoslovov,et al.  Effect of Silica Nanoparticles on the Local Segmental Dynamics in Poly(vinyl acetate) , 2008 .

[16]  V. Dang,et al.  The application of Raman spectroscopy to three-phase characterization of polyethylene crystallinity , 2007 .

[17]  H. Shen,et al.  Graphitic nanofillers in PMMA nanocomposites—An investigation of particle size and dispersion and their influence on nanocomposite properties , 2007 .

[18]  J. G. Ribelles,et al.  Polymer–silica nanocomposites prepared by sol–gel technique: Nanoindentation and tapping mode AFM studies , 2007 .

[19]  H. Gojzewski,et al.  Visco-elastic properties of thin nylon films using multi-cycling nanoindentation , 2007 .

[20]  S. Oh,et al.  Photopolymerization and photobleaching of n-butyl acrylate/fumed silica composites monitored by real time FTIR-ATR spectroscopy , 2006 .

[21]  B. You,et al.  Kinetic investigations on the UV-induced photopolymerization of nanocomposites by FTIR spectroscopy , 2006 .

[22]  Karl I. Jacob,et al.  Experimental trends in polymer nanocomposites—a review , 2005 .

[23]  Jin-Who Hong,et al.  Photocuring kinetics of UV‐initiated free‐radical photopolymerizations with and without silica nanoparticles , 2005 .

[24]  Concepción Domingo,et al.  Low Percolation Threshold in Nanocomposites Based on Oxidized Single Wall Carbon Nanotubes and Poly(butylene terephthalate) , 2004 .

[25]  M. Ivanda,et al.  Raman spectroscopy on SiO2 glasses sintered from nanosized particles , 2003 .

[26]  E. Andrzejewska Photopolymerization kinetics of multifunctional monomers , 2001 .

[27]  A. DeMaria,et al.  Laser handbook , 1981, IEEE Journal of Quantum Electronics.

[28]  L. Brillouin Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l'agitation thermique , 1922 .