Design, synthesis, solid-state and solution structures, non linear optical and computational studies of copper(II) complexes supported by variously substituted enantiomerically pure push-pull tetradentate Schiff base ligands

[1]  Salman A. Khan,et al.  A Review: An Overview on third-order nonlinear optical and optical limiting properties of Schiff Bases , 2023, Journal of Molecular Structure.

[2]  S. Ray,et al.  Carbon-carbon Cross Coupling Reactions Assisted by Schiff Base Complexes of Palladium, Cobalt and Copper: A Brief Overview , 2023, Inorganica Chimica Acta.

[3]  Salman A. Khan,et al.  A review on Rhodamine-based Schiff base derivatives: synthesis and fluorescent chemo-sensors behaviour for detection of Fe3+ and Cu2+ ions , 2023, Journal of Coordination Chemistry.

[4]  A. Delimi,et al.  Schiff Bases and Their Metal Complexes: A review on the history, synthesis, and applications , 2023, Inorganic Chemistry Communications.

[5]  N. Suja,et al.  Chiral Schiff base ligands of salicylaldehyde: A versatile tool for medical applications and organic synthesis-A review , 2022, Inorganica Chimica Acta.

[6]  A. Bargan,et al.  Advanced and Biomedical Applications of Schiff-Base Ligands and Their Metal Complexes: A Review , 2022, Crystals.

[7]  I. Ledoux-Rak,et al.  Experimental and Theoretical Evaluation of Four NLO‐Active Divalent Transition Metal Complexes Supported by an Enantiomerically Pure Tetradentate Schiff Base Ligand , 2022, European Journal of Inorganic Chemistry.

[8]  Yizhen Tang,et al.  Synthesis, characterization and theoretical calculations of four chiral schiff base materials for second harmonic generation applications , 2022, Journal of Molecular Structure.

[9]  M. Mellah,et al.  Making Chiral Salen Complexes Work with Organocatalysts. , 2022, Chemical reviews.

[10]  Francesco Zinna,et al.  Schiff-base [4]helicene Zn(II) complexes as chiral emitters. , 2021, Dalton transactions.

[11]  S. Avdoshenko,et al.  Infrared spectroscopic study of nickel complexes with salen-type ligands and their polymers , 2021 .

[12]  D. Wragg,et al.  The Reactivity of Multidentate Schiff Base Ligands Derived from Bi‐ and Terphenyl Polyamines towards M(II) (M=Ni, Cu, Zn, Cd) and M(III) (M=Co, Y, Lu) , 2021 .

[13]  E. Schulz Chiral Cobalt‐Salen Complexes: Ubiquitous Species in Asymmetric Catalysis , 2021, Chemical record.

[14]  T. Roisnel,et al.  Transition metal(II) complexes featuring push-pull dianionic Schiff base ligands: synthesis, crystal structure, electrochemical, and NLO studies , 2020 .

[15]  L. Fabbrizzi Beauty in Chemistry: Making Artistic Molecules with Schiff Bases , 2020, The Journal of organic chemistry.

[16]  B. Teng,et al.  Synthesis, growth and characterization of N, N-dimethyl-4-[2-(2-quinolyl) vinyl] aniline (DADMQ): An SHG material for NLO applications , 2020 .

[17]  S. Fantacci,et al.  A Chiral Bis(salicylaldiminato)zinc(II) Complex with Second-Order Nonlinear Optical and Luminescent Properties in Solution , 2020, Inorganics.

[18]  A. Forni,et al.  Solid-State Nonlinear Optical Properties of Mononuclear Copper(II) Complexes with Chiral Tridentate and Tetradentate Schiff Base Ligands , 2019, Materials.

[19]  D. M. Fernandes,et al.  Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties , 2019, Coordination Chemistry Reviews.

[20]  Robin Taylor,et al.  A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. , 2019, Chemical reviews.

[21]  James D White,et al.  Asymmetric Catalysis Using Chiral Salen-Metal Complexes: Recent Advances. , 2019, Chemical reviews.

[22]  J. Long Luminescent Schiff-Base Lanthanide Single-Molecule Magnets: The Association Between Optical and Magnetic Properties , 2019, Front. Chem..

[23]  S. Bartkiewicz,et al.  Second harmonic generation in nonlinear optical crystals formed from propellane-type molecules , 2019, Journal of Materials Chemistry C.

[24]  Xiang Liu,et al.  Multidentate unsymmetrically-substituted Schiff bases and their metal complexes: Synthesis, functional materials properties, and applications to catalysis , 2018 .

[25]  P. Cozzi,et al.  Stereoselective Reactions with Chiral Schiff Base Metal Complexes. , 2017, Chimia (Basel).

[26]  A. Erxleben Transition metal salen complexes in bioinorganic and medicinal chemistry , 2017 .

[27]  V. Dorcet,et al.  Nickel(II) and copper(II) complexes of new unsymmetrically-substituted tetradentate Schiff base ligands: Spectral, structural, electrochemical and computational studies , 2017 .

[28]  Yang Li,et al.  Copper complexes based on chiral Schiff-base ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis. , 2016, European journal of medicinal chemistry.

[29]  V. Dorcet,et al.  Synthesis, spectral, electrochemical, crystal structures and nonlinear optical properties of unsymmetrical Ni(II) and Cu(II) Schiff base complexes , 2015 .

[30]  A. Rowan,et al.  Organized chromophoric assemblies for nonlinear optical materials: towards (sub)wavelength scale architectures. , 2015, Small.

[31]  Sha Long,et al.  Schiff Bases: A Short Survey on an Evergreen Chemistry Tool , 2013, Molecules.

[32]  M. Verdaguer,et al.  The fruitful introduction of chirality and control of absolute configurations in molecular magnets. , 2011, Chemical Society reviews.

[33]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[34]  Cheng‐Hui Li,et al.  Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). , 2010, Chemical communications.

[35]  I. Ledoux-Rak,et al.  Synthesis, spectral, structural, second-order nonlinear optical properties and theoretical studies on new organometallic donor-acceptor substituted nickel(II) and copper(II) unsymmetrical Schiff-base complexes. , 2010, Inorganic chemistry.

[36]  G. Roy Synthesis and study of physico-chemical properties of a new chiral Schiff base ligand and its metal complex , 2009 .

[37]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[38]  P. Uriac,et al.  Preparation and characterization of copper(II) and nickel(II) complexes of a new chiral salen ligand derived from (+)-usnic acid. , 2008, Dalton transactions.

[39]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[40]  D. Powell,et al.  Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. , 2007, Dalton transactions.

[41]  H. García,et al.  Chiral salen complexes: an overview to recoverable and reusable homogeneous and heterogeneous catalysts. , 2006, Chemical reviews.

[42]  P. Halasyamani,et al.  Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. , 2006, Chemical Society reviews.

[43]  P. Cozzi Metal-Salen Schiff base complexes in catalysis: practical aspects. , 2004, Chemical Society reviews.

[44]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[45]  T. Katsuki,et al.  Some Recent Advances in Metallosalen Chemistry , 2003 .

[46]  J. Zyss,et al.  Supramolecular Octupolar Self‐Ordering Towards Nonlinear Optics , 2001 .

[47]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[48]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[49]  C. Mioskowski,et al.  The Chemistry of Vicinal Diamines. , 1998, Angewandte Chemie.

[50]  K. Nakatani,et al.  Syntheses, Crystal Structures, and NLO Properties of New Chiral Inorganic Chromophores for Second-Harmonic Generation. , 1998, Inorganic chemistry.

[51]  S. Hanessian,et al.  trans-1,2-Diaminocyclohexane Derivatives as Chiral Reagents, Scaffolds, and Ligands for Catalysis: Applications in Asymmetric Synthesis and Molecular Recognition. , 1997, Chemical reviews.

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[54]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[55]  C. Bethea,et al.  Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids , 1974 .

[56]  L. Randaccio,et al.  Structural aspects of metal complexes with some tetradentate schiff bases , 1972 .

[57]  F. Urbach,et al.  Circular dichroism of square-planar, tetradentate Schiff base chelates of copper(II) , 1969 .

[58]  S. K. Kurtz,et al.  A powder technique for the evaluation of nonlinear optical materials , 1968 .

[59]  R. W. Terhune,et al.  Measurements of Nonlinear Light Scattering , 1965 .

[60]  Jack D. Dunitz,et al.  The crystal structure of ferrocene , 1956 .

[61]  J. Saillard,et al.  Ferrocene functionalized enantiomerically pure Schiff bases and their Zn(II) and Pd(II) complexes : a spectroscopic, crystallographic, electrochemical and computational investigation , 2022, New Journal of Chemistry.

[62]  M. Al-Anber Electrochemical behaviour and electronic absorption of the metal β-diketonates complexes , 2013 .

[63]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[64]  E. Jacobsen,et al.  Asymmetric Processes Catalyzed by Chiral (Salen)Metal Complexes , 2004 .

[65]  F. Dahan,et al.  Synthesis, crystal structure and solid state NLO properties of a new chiral bis(salicylaldiminato)nickel(II) Schiff-base complex in a nearly optimized solid state environment , 2000 .

[66]  D. Sherrington,et al.  Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis , 1999 .

[67]  A. Pasini,et al.  Optically active complexes of Schiff bases. Part 4. An analysis of the circular-dichroism spectra of some complexes of different co-ordination numbers with quadridentate Schiff bases of optically active diamines , 1977 .