Coalgebraic Automata Theory: Basic Results

We generalize some of the central results in automata theory to the abstraction level of coalgebras and thus lay out the foundations of a universal theory of automata operating on infinite objects. Let F be any set functor that preserves weak pullbacks. We show that the class of recognizable languages of F-coalgebras is closed under taking unions, intersections, and projections. We also prove that if a nondeterministic F-automaton accepts some coalgebra it accepts a finite one of the size of the automaton. Our main technical result concerns an explicit construction which transforms a given alternating F-automaton into an equivalent nondeterministic one, whose size is exponentially bound by the size of the original automaton.

[1]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[2]  Richard S. Bird,et al.  Algebra of programming , 1997, Prentice Hall International series in computer science.

[3]  Yde Venema Automata and fixed point logic: A coalgebraic perspective , 2006, Inf. Comput..

[4]  Yde Venema Automata and Fixed Point Logics for Coalgebras , 2004, CMCS.

[5]  Yde Venema,et al.  Closure properties of coalgebra automata , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[6]  Věra Trnková,et al.  Some properties of set functors , 1969 .

[7]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[8]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[9]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1999, Theor. Comput. Sci..

[10]  Bart Jacobs,et al.  Distributive laws for the coinductive solution of recursive equations , 2006, Inf. Comput..

[11]  Marco Hollenberg,et al.  Logical questions concerning the μ-calculus: Interpolation, Lyndon and Łoś-Tarski , 2000, Journal of Symbolic Logic.

[12]  A. Arnold,et al.  Rudiments of μ-calculus , 2001 .

[13]  Nir Piterman,et al.  From Nondeterministic Buchi and Streett Automata to Deterministic Parity Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[14]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[15]  Vera Trnková,et al.  Relational Automata ina Category and their Language , 1977, FCT.

[16]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[17]  Alexandru Baltag,et al.  A Logic for Coalgebraic Simulation , 2000, CMCS.

[18]  Orna Kupferman,et al.  On the Complexity of Parity Word Automata , 2001, FoSSaCS.

[19]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[20]  Damian Niwinski,et al.  Fixed Point Characterization of Infinite Behavior of Finite-State Systems , 1997, Theor. Comput. Sci..

[21]  S. Pinchinat,et al.  Automata, Logics, and Infinite Games , 2007 .

[22]  David E. Muller,et al.  Simulating Alternating Tree Automata by Nondeterministic Automata: New Results and New Proofs of the Theorems of Rabin, McNaughton and Safra , 1995, Theor. Comput. Sci..

[23]  Igor Walukiewicz,et al.  Automata for the Modal mu-Calculus and related Results , 1995, MFCS.

[24]  Christian Kissig,et al.  Decidability of S2S , 2007 .

[25]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[26]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[27]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[28]  Peter Lammich,et al.  Tree Automata , 2009, Arch. Formal Proofs.

[29]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[30]  H. Peter Gumm,et al.  Monoid-labeled transition systems , 2001, CMCS.