Design and Diversity Analysis of Compound Libraries for Lead Discovery

[1]  I D Kuntz,et al.  Structure-based design and combinatorial chemistry yield low nanomolar inhibitors of cathepsin D. , 1997, Chemistry & biology.

[2]  Robert D. Clark,et al.  Virtual Compound Libraries: A New Approach to Decision Making in Molecular Discovery Research , 1998, J. Chem. Inf. Comput. Sci..

[3]  Paola Gramatica,et al.  Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons , 1995 .

[4]  John M. Barnard,et al.  Clustering of chemical structures on the basis of two-dimensional similarity measures , 1992, J. Chem. Inf. Comput. Sci..

[5]  Louis Hodes,et al.  An Efficient Design for Chemical Structure Searching. II. The File Oraganization , 1978, J. Chem. Inf. Comput. Sci..

[6]  J Alper,et al.  Drug discovery on the assembly line. , 1994, Science.

[7]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[8]  Sung Jin Cho,et al.  Rational design of a targeted combinatorial chemical library with opiatelike activity , 1998 .

[9]  Robert D. Brown Descriptors for diversity analysis , 1996 .

[10]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[11]  Michael F. Lynch,et al.  Strategic Considerations in the Design of a Screening System for Substructure Searches of Chemical Structure Files , 1973 .

[12]  Robin Taylor,et al.  Simulation Analysis of Experimental Design Strategies for Screening Random Compounds as Potential New Drugs and Agrochemicals , 1995, J. Chem. Inf. Comput. Sci..

[13]  Thomas Lengauer,et al.  RigFit: A new approach to superimposing ligand molecules , 1998, German Conference on Bioinformatics.

[14]  Klaus Gubernator,et al.  Optimization of the Biological Activity of Combinatorial Compound Libraries by a Genetic Algorithm , 1995 .

[15]  Lemont B. Kier,et al.  The electrotopological state: structure information at the atomic level for molecular graphs , 1991, J. Chem. Inf. Comput. Sci..

[16]  J. Gasteiger,et al.  Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah Receptor Activity by Neural Networks , 1995 .

[17]  G. Jung,et al.  Organic Chemistry on Solid Supports , 1996 .

[18]  Lutz Weber,et al.  Evolutionary combinatorial chemistry: application of genetic algorithms , 1998 .

[19]  A. Ghose,et al.  Atomic Physicochemical Parameters for Three‐Dimensional Structure‐Directed Quantitative Structure‐Activity Relationships I. Partition Coefficients as a Measure of Hydrophobicity , 1986 .

[20]  Arup K. Ghose,et al.  Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics , 1989, J. Chem. Inf. Comput. Sci..

[21]  D. E. Patterson,et al.  Designing Chemical Libraries for Lead Discovery , 1996 .

[22]  Brian K. Shoichet,et al.  Molecular docking using shape descriptors , 1992 .

[23]  Wendy A. Warr,et al.  Combinatorial Chemistry and Molecular Diversity. An Overview , 1997, J. Chem. Inf. Comput. Sci..

[24]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[25]  Bruce L. Bush,et al.  Extending the trend vector: The trend matrix and sample-based partial least squares , 1994, J. Comput. Aided Mol. Des..

[26]  M. Lajiness Dissimilarity-based compound selection techniques , 1996 .

[27]  Sung Jin Cho,et al.  Rational Combinatorial Library Design. 1. Focus-2D: A New Approach to the Design of Targeted Combinatorial Chemical Libraries , 1998, J. Chem. Inf. Comput. Sci..

[28]  S. P. Fodor,et al.  Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. , 1994, Journal of medicinal chemistry.

[29]  Johann Gasteiger,et al.  Assessing Similarity and Diversity of Combinatorial Libraries by Spatial Autocorrelation Functions and Neural Networks , 1996 .

[30]  Robert D Clark,et al.  Bioisosterism as a molecular diversity descriptor: steric fields of single "topomeric" conformers. , 1996, Journal of medicinal chemistry.

[31]  Thomas Lengauer,et al.  Multiple automatic base selection: Protein–ligand docking based on incremental construction without manual intervention , 1997, J. Comput. Aided Mol. Des..

[32]  Ajay,et al.  Can we learn to distinguish between "drug-like" and "nondrug-like" molecules? , 1998, Journal of medicinal chemistry.

[33]  David M. Rocke,et al.  Predicting ligand binding to proteins by affinity fingerprinting. , 1995, Chemistry & biology.

[34]  Robert P. Sheridan,et al.  Chemical Similarity Using Geometric Atom Pair Descriptors , 1996, J. Chem. Inf. Comput. Sci..

[35]  P. Willett,et al.  A Comparison of Some Measures for the Determination of Inter‐Molecular Structural Similarity Measures of Inter‐Molecular Structural Similarity , 1986 .

[36]  Robert D. Clark,et al.  Balancing Representativeness Against Diversity using Optimizable K-Dissimilarity and Hierarchical Clustering , 1998, J. Chem. Inf. Comput. Sci..

[37]  John H. Van Drie,et al.  Approaches to virtual library design , 1998 .

[38]  Stephen D. Pickett,et al.  Diversity Profiling and Design Using 3D Pharmacophores: Pharmacophore-Derived Queries (PDQ) , 1996, J. Chem. Inf. Comput. Sci..

[39]  R. Venkataraghavan,et al.  Atom pairs as molecular features in structure-activity studies: definition and applications , 1985, J. Chem. Inf. Comput. Sci..

[40]  Yvonne C. Martin,et al.  Use of Structure-Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection , 1996, J. Chem. Inf. Comput. Sci..

[41]  Gnther Jung,et al.  Combinatorial Peptide and Nonpeptide Libraries , 1996 .

[42]  Bohdan Waszkowycz,et al.  Targeted molecular diversity in drug discovery: Integration of structure-based design and combinatorial chemistry , 1998 .

[43]  Yvonne C. Martin,et al.  A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists , 1993, J. Comput. Aided Mol. Des..

[44]  Louis Hodes,et al.  Selection of Descriptors According to Discrimination and Redundancy. Application to Chemical Structure Searching , 1976, J. Chem. Inf. Comput. Sci..

[45]  S. P. Fodor,et al.  Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. , 1994, Journal of medicinal chemistry.

[46]  Mark A. Murcko,et al.  Virtual screening : an overview , 1998 .

[47]  W. DeGrado,et al.  Complementarity of Combinatorial Chemistry and Structure-Based Ligand Design: Application to the Discovery of Novel Inhibitors of Matrix Metalloproteinases , 1996 .

[48]  S. Wold,et al.  Multivariate Data Analysis in Chemistry , 1984 .

[49]  P. Willett,et al.  A Fast Algorithm For Selecting Sets Of Dissimilar Molecules From Large Chemical Databases , 1995 .

[50]  James B. Dunbar,et al.  Enhancing the diversity of a corporate database using chemical database clustering and analysis , 1995, J. Comput. Aided Mol. Des..

[51]  W. Moos,et al.  The generation of molecular diversity , 1993 .

[52]  Hans-Joachim Böhm,et al.  Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs , 1998, J. Comput. Aided Mol. Des..

[53]  Peter G. Schultz,et al.  A Structure-Based Library Approach to Kinase Inhibitors , 1996 .

[54]  Jonathan A. Ellman,et al.  Synthesis and Applications of Small Molecule Libraries. , 1996, Chemical reviews.

[55]  Steven L. Teig,et al.  Chemical Function Queries for 3D Database Search , 1994, J. Chem. Inf. Comput. Sci..

[56]  Michael M. Hann,et al.  RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry , 1998, J. Chem. Inf. Comput. Sci..

[57]  Garland R. Marshall,et al.  VALIDATE: A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands , 1996 .

[58]  Darren R. Flower,et al.  On the Properties of Bit String-Based Measures of Chemical Similarity , 1998, J. Chem. Inf. Comput. Sci..

[59]  Ramaswamy Nilakantan,et al.  Database diversity assessment: New ideas, concepts, and tools , 1997, J. Comput. Aided Mol. Des..

[60]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[61]  Gareth Jones,et al.  A genetic algorithm for flexible molecular overlay and pharmacophore elucidation , 1995, J. Comput. Aided Mol. Des..

[62]  David Chapman,et al.  The measurement of molecular diversity: A three-dimensional approach , 1996, J. Comput. Aided Mol. Des..

[63]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[64]  Dinesh V. Patel,et al.  Strategy and Tactics in Combinatorial Organic Synthesis. Applications to Drug Discovery , 1996 .

[65]  M. Lebl,et al.  Synthetic combinatorial libraries: Views on techniques and their application , 1995 .

[66]  Diana C. Roe,et al.  BUILDER v.2: Improving the chemistry of a de novo design strategy , 1995, J. Comput. Aided Mol. Des..

[67]  Y. Martin,et al.  Computational methods in molecular diversity and combinatorial chemistry. , 1998, Current opinion in chemical biology.

[68]  I. Kuntz,et al.  Automated docking with grid‐based energy evaluation , 1992 .

[69]  Irwin D. Kuntz,et al.  Automated flexible ligand docking method and its application for database search , 1997 .

[70]  G. Rishton Reactive compounds and in vitro false positives in HTS , 1997 .

[71]  G. V. Paolini,et al.  Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes , 1997, J. Comput. Aided Mol. Des..

[72]  Sung Jin Cho,et al.  Rational Combinatorial Library Design. 2. Rational Design of Targeted Combinatorial Peptide Libraries Using Chemical Similarity Probe and the Inverse QSAR Approaches , 1998, J. Chem. Inf. Comput. Sci..

[73]  R. Everett Analysis and modeling of fiber clustering in composites using N-tuples , 1993 .

[74]  P. Willett,et al.  Implementation of nonhierarchic cluster analysis methods in chemical information structure search , 1986 .

[75]  R. Houghten,et al.  The Current Status of Heterocyclic Combinatorial Libraries. , 1997, Chemical reviews.

[76]  Robert D Clark,et al.  Neighborhood behavior: a useful concept for validation of "molecular diversity" descriptors. , 1996, Journal of medicinal chemistry.

[77]  H Matter,et al.  Random or rational design? Evaluation of diverse compound subsets from chemical structure databases. , 1998, Journal of medicinal chemistry.

[78]  Ajay N. Jain Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities , 1996, J. Comput. Aided Mol. Des..

[79]  Vijay K. Gombar,et al.  Quantitative Structure‐Activity Relationship (QSAR) Studies Using Electronic Descriptors Calculated from Topological and Molecular Orbital (MO) Methods , 1990 .

[80]  Paola Gramatica,et al.  Modeling and prediction by using WHIM descriptors in QSAR studies: submitochondrial particles (SMP) as toxicity blosensors of chlorophenols , 1996 .

[81]  Marina Lasagni,et al.  New molecular descriptors for 2D and 3D structures. Theory , 1994 .

[82]  Malcolm J. McGregor,et al.  Clustering of Large Databases of Compounds: Using the MDL "Keys" as Structural Descriptors , 1997, J. Chem. Inf. Comput. Sci..

[83]  J. Mason,et al.  New perspectives in lead generation II: Evaluating molecular diversity , 1996 .

[84]  Jonathan A. Ellman,et al.  Design, Synthesis, and Evaluation of Small-Molecule Libraries , 1996 .

[85]  A. Good,et al.  New methodology for profiling combinatorial libraries and screening sets: cleaning up the design process with HARPick. , 1997, Journal of medicinal chemistry.

[86]  P Willett,et al.  Comparison of algorithms for dissimilarity-based compound selection. , 1997, Journal of molecular graphics & modelling.

[87]  Garland R. Marshall,et al.  3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors: A comparison of CoMFA models based on deduced and experimentally determined active site geometries , 1993 .

[88]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[89]  Robert D. Clark,et al.  OptiSim: An Extended Dissimilarity Selection Method for Finding Diverse Representative Subsets , 1997, J. Chem. Inf. Comput. Sci..

[90]  Y. Martin,et al.  Designing combinatorial library mixtures using a genetic algorithm. , 1997, Journal of medicinal chemistry.

[91]  S. Wold,et al.  A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm , 1994 .

[92]  R. Webster Homer,et al.  SYBYL Line Notation (SLN): A Versatile Language for Chemical Structure Representation , 1997, J. Chem. Inf. Comput. Sci..

[93]  C. Zechel,et al.  Combinatorial Synthesis of Small Organic Molecules , 1996 .

[94]  J. Ellman,et al.  Chapter 31. Solid-Phase Synthesis: Applications to Combinatorial Libraries , 1996 .

[95]  Yvonne C. Martin,et al.  The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding , 1997, J. Chem. Inf. Comput. Sci..

[96]  Hualiang Jiang,et al.  A New Approach to Design Virtual Combinatorial Library with Genetic Algorithm Based on 3D Grid Property , 1998, J. Chem. Inf. Comput. Sci..

[97]  John Bradshaw,et al.  The Effectiveness of Reactant Pools for Generating Structurally-Diverse Combinatorial Libraries , 1997, J. Chem. Inf. Comput. Sci..

[98]  H. Kubinyi,et al.  A scoring scheme for discriminating between drugs and nondrugs. , 1998, Journal of medicinal chemistry.

[99]  Richard D. Cramer,et al.  Solution Phase Synthesis of Chemical Libraries for Lead Discovery , 1996 .

[100]  Robert P. Sheridan,et al.  Chemical Similarity Using Physiochemical Property Descriptors , 1996, J. Chem. Inf. Comput. Sci..

[101]  I. Kuntz,et al.  Molecular similarity based on DOCK-generated fingerprints. , 1996, Journal of medicinal chemistry.

[102]  L. Kier Indexes of molecular shape from chemical graphs , 1987, Medicinal research reviews.

[103]  D C Spellmeyer,et al.  Measuring diversity: experimental design of combinatorial libraries for drug discovery. , 1995, Journal of medicinal chemistry.

[104]  Michael F. Lynch,et al.  An Evaluation of a Substructure Search Screen System Based on Bond-Centered Fragments. , 1974 .

[105]  Iain M. McLay,et al.  Similarity Measures for Rational Set Selection and Analysis of Combinatorial Libraries: The Diverse Property-Derived (DPD) Approach , 1997, Journal of chemical information and computer sciences.

[106]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[107]  Matthias Rarey,et al.  Feature trees: A new molecular similarity measure based on tree matching , 1998, J. Comput. Aided Mol. Des..

[108]  Peter Willett,et al.  Similarity Searching in Files of Three-Dimensional Chemical Structures. Alignment of Molecular Electrostatic Potential Fields with a Genetic Algorithm , 1996, J. Chem. Inf. Comput. Sci..