Early diagenesis in Pleistocene coral reefs, southern Sinai, Egypt: response to tectonics, sea‐level and climate

The uplifted Pleistocene terraces along the coast of southern Sinai exhibit a well developed reef system formed during isotope stage 9, and a younger one formed during isotope stage 5. An intermediate reef corresponding to isotope stage 7 occurs only as an erosional relic in the study area. The sediments comprise reefal framestones, peri-reefal facies, coral rubble, and siliciclastic-dominated beach and aeolian facies. The compositional and textural complexity of the sediments leads to a highly variable spatial distribution of diagenetic features. However, the geometric relationships and elemental analyses allow a reconstruction of the general diagenetic evolution: during the major eustatic sea-level highstand of isotope stage 9, the Older Reef was constructed and cemented with aragonite and high-Mg calcite. Climate was probably semiarid with some rainy periods which permitted the installation of ephemeral freshwater lenses, especially during the minor sea-level lowstand within isotope stage 9. In these lenses, and during the subsequent major sea-level lowstand, some freshwater dissolution occurred. The highstand during isotope stage 7 led to the construction of the Intermediate Reef. In the Older Reef, some high-Mg calcite precipitated at that time. Dolomite cement formed either in marine interstitial waters modified by some freshwater input, or in a hypersaline context. Phreatic-meteoric low-Mg calcite cement covers, and partly replaces, previous marine cements and dolomite, but is still attributed to the major highstand of isotope stage 7 when freshwater lenses could develop during minor sea-level lowstands. The subsequent major sea-level lowstand was dominated by an arid climate, and only a little freshwater corrosion occurred. The Younger Reef formed during the major highstand of isotope stage 5. Aragonite and high-Mg calcite cements, as well as some dolomite, are common within the reef, whereas freshwater cements are limited to beach and aeolian facies. Due to tectonic uplift, only the lower part of the Older Reef was reflooded during isotope stage 5, and only some aragonite crystals precipitated on top of dolomite or low-Mg calcite. The interrelationships between tectonics, sea-level variations of different orders, and climatic changes thus had a profound impact on the diagenetic history of these reef systems.