Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization

The formulation of pedestrian floor field cellular automaton models is generally based on hypothetical assumptions to represent reality. This paper proposes a novel methodology to calibrate these models using experimental trajectories. The methodology is based on likelihood function optimization and allows verifying whether the parameters defining a model statistically affect pedestrian navigation. Moreover, it allows comparing different model specifications or the parameters of the same model estimated using different data collection techniques, e.g. virtual reality experiment, real data, etc. The methodology is here implemented using navigation data collected in a Virtual Reality tunnel evacuation experiment including 96 participants. A trajectory dataset in the proximity of an emergency exit is used to test and compare different metrics, i.e. Euclidean and modified Euclidean distance, for the static floor field. In the present case study, modified Euclidean metrics provide better fitting with the data. A new formulation using random parameters for pedestrian cellular automaton models is also defined and tested.

[1]  Yuan Weifeng,et al.  A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition , 2007 .

[2]  A. Seyfried,et al.  Methods for measuring pedestrian density, flow, speed and direction with minimal scatter , 2009, 0911.2165.

[3]  A. Schadschneider,et al.  Simulation of pedestrian dynamics using a two dimensional cellular automaton , 2001 .

[4]  Dirk Helbing,et al.  Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data , 2007, Adv. Complex Syst..

[5]  A. Schadschneider,et al.  Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics , 2004 .

[6]  Enrico Ronchi,et al.  A Virtual Reality experiment on the design of flashing lights at emergency exit portals for road tunnel evacuations , 2015 .

[7]  Jaroslaw Was,et al.  Towards realistic and effective Agent-based models of crowd dynamics , 2014, Neurocomputing.

[8]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[9]  J. L. Berrou,et al.  Calibration and validation of the Legion simulation model using empirical data , 2007 .

[10]  Ruggiero Lovreglio,et al.  A discrete choice model based on random utilities for exit choice in emergency evacuations , 2014 .

[11]  Jaroslaw Was,et al.  Cellular automata model of pedestrian dynamics for normal and evacuation conditions , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[12]  Manfred Gilli,et al.  Understanding complex systems , 1981, Autom..

[13]  Juan Zhang,et al.  Study on bi-direction pedestrian flow using cellular automata simulation , 2010 .

[14]  I. J. Myung,et al.  Tutorial on maximum likelihood estimation , 2003 .

[15]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[16]  Michael Schreckenberg,et al.  Simulation of competitive egress behavior: comparison with aircraft evacuation data , 2003 .

[17]  Adrian Muntean,et al.  Dynamics of pedestrians in regions with no visibility:a lattice model without exclusion , 2012, 1203.4852.

[18]  George Yannis,et al.  A critical assessment of pedestrian behaviour models , 2009 .

[19]  Ruggiero Lovreglio,et al.  A mixed logit model for predicting exit choice during building evacuations , 2016 .

[20]  Jun Yang,et al.  Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study , 2014, Reliab. Eng. Syst. Saf..

[21]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[22]  Andreas Schadschneider,et al.  Empirical Results for Pedestrian Dynamics and their Implications for Cellular Automata Models , 2009 .

[23]  Enrico Ronchi,et al.  A Method for the Analysis of Behavioural Uncertainty in Evacuation Modelling , 2014 .

[24]  Edwin R. Galea,et al.  A systematic comparison of buildingEXODUS predictions with experimental data from the Stapelfeldt trials and the Milburn House evacuation , 2005 .

[25]  A. Schadschneider Cellular Automaton Approach to Pedestrian Dynamics - Theory , 2001, cond-mat/0112117.

[26]  W. Steiger,et al.  Least Absolute Deviations: Theory, Applications and Algorithms , 1984 .

[27]  A. Schadschneider,et al.  Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram , 2011, 1107.5246.

[28]  Chih-Yuan Chu,et al.  A Computer Model for Selecting Facility Evacuation Design Using Cellular Automata , 2009, Comput. Aided Civ. Infrastructure Eng..

[29]  Michel Bierlaire,et al.  Discrete Choice Models for Pedestrian Walking Behavior , 2006 .

[30]  Serge P. Hoogendoorn,et al.  A Novel Calibration Approach of Microscopic Pedestrian Models , 2009 .

[31]  Xiaoping Zheng,et al.  Modification of the dynamic floor field model by the heterogeneous bosons , 2015 .

[32]  Barbara Majecka,et al.  Statistical models of pedestrian behaviour in the Forum , 2009 .

[33]  Enrico Ronchi,et al.  Movement speed and exit choice in smoke-filled rail tunnels , 2013 .

[34]  Sabiha Amin Wadoo,et al.  Pedestrian Dynamics: Feedback Control of Crowd Evacuation , 2008 .

[35]  Daichi Yanagisawa,et al.  Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model , 2012 .

[36]  Hai-Jun Huang,et al.  A microscopic pedestrian-simulation model and its application to intersecting flows , 2010 .

[37]  John M. Rose,et al.  Applied Choice Analysis: A Primer , 2005 .

[38]  Jun Zhang,et al.  Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions , 2011, 1102.4766.

[39]  R. Alizadeh,et al.  A dynamic cellular automaton model for evacuation process with obstacles , 2011 .

[40]  Enrico Ronchi,et al.  The validation of evacuation simulation models through the analysis of behavioural uncertainty , 2014, Reliab. Eng. Syst. Saf..

[41]  Ekaterina Kirik,et al.  ON REALIZING THE SHORTEST TIME STRATEGY IN A CA FF PEDESTRIAN DYNAMICS MODEL , 2011, Cybern. Syst..

[42]  Xiaodong Zhou,et al.  A floor field cellular automaton for crowd evacuation considering different walking abilities , 2015 .

[43]  Stefan Nowak,et al.  Towards a Calibration of the Floor Field Cellular Automaton , 2011 .

[44]  E. F. Codd,et al.  Cellular automata , 1968 .

[45]  Erica D. Kuligowski,et al.  Review of Building Evacuation Models , 2005 .

[46]  Tao Chen,et al.  Lattice gas simulation and experiment study of evacuation dynamics , 2008 .

[47]  Alessandro Saffiotti,et al.  A Multivalued Logic Approach to Integrating Planning and Control , 1995, Artif. Intell..

[48]  Andreas Schadschneider,et al.  Phase Coexistence in Congested States of Pedestrian Dynamics , 2010, ACRI.

[49]  Shing Chung Josh Wong,et al.  Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results , 2012 .

[50]  Enrico Ronchi,et al.  A Virtual Reality Experiment on Flashing Lights at Emergency Exit Portals for Road Tunnel Evacuation , 2015, Fire Technology.

[51]  Технология Springer Science+Business Media , 2013 .

[52]  K. Train Discrete Choice Methods with Simulation , 2003 .

[53]  Rodrigo Machado Tavares,et al.  Evacuation Processes Versus Evacuation Models: “Quo Vadimus”? , 2009 .

[54]  Carlo Ratti,et al.  Kinects and human kinetics: a new approach for studying pedestrian behavior , 2014 .

[55]  Andreas Schadschneider,et al.  Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics , 2002 .

[56]  Nuria Pelechano,et al.  Evacuation simulation models: challenges in modeling high rise building evacuation with cellular automata approaches , 2008 .

[57]  Tomasz M. Gwizdałła,et al.  Some properties of the floor field cellular automata evacuation model , 2015 .