The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma.

High-grade gliomas are notoriously insensitive to radiation and genotoxic drugs. Paradoxically, the p53 gene is structurally intact in the majority of these tumors. Resistance to genotoxic modalities in p53-positive gliomas is generally attributed to attenuation of p53 functions by mutations of other components within the p53 signaling axis, such as p14(Arf), MDM2, and ATM, but this explanation is not entirely satisfactory. We show here that the central nervous system (CNS)-restricted transcription factor Olig2 affects a key posttranslational modification of p53 in both normal and malignant neural progenitors and thereby antagonizes the interaction of p53 with promoter elements of multiple target genes. In the absence of Olig2 function, even attenuated levels of p53 are adequate for biological responses to genotoxic damage.

[1]  W. El-Deiry,et al.  Tissue-specific induction of p53 targets in vivo. , 2002, Cancer research.

[2]  J. Cairncross,et al.  Successful chemotherapy for recurrent malignant oligodendroglioma , 1988, Annals of neurology.

[3]  L. J. Rubinstein,et al.  Tumours of the Central Nervous System , 1979 .

[4]  T. Jessell,et al.  Coordinate Regulation of Motor Neuron Subtype Identity and Pan-Neuronal Properties by the bHLH Repressor Olig2 , 2001, Neuron.

[5]  Eduardo Sontag,et al.  Transcriptional control of human p53-regulated genes , 2008, Nature Reviews Molecular Cell Biology.

[6]  Mark Bernstein,et al.  Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. , 2009, Cell stem cell.

[7]  Mark Shackleton,et al.  Efficient tumour formation by single human melanoma cells , 2008 .

[8]  Anne E Carpenter,et al.  A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen , 2006, Cell.

[9]  N. Perkins,et al.  DNA-dependent Acetylation of p53 by the Transcription Coactivator p300* , 2003, The Journal of Biological Chemistry.

[10]  D. Hargrave,et al.  Tumours of the central nervous system , 2004 .

[11]  G. Wahl,et al.  Linking the p53 tumor suppressor pathway to somatic cell reprogramming , 2009, Nature.

[12]  D. Rowitch,et al.  Phosphorylation State of Olig2 Regulates Proliferation of Neural Progenitors , 2011, Neuron.

[13]  C. Prives,et al.  Blinded by the Light: The Growing Complexity of p53 , 2009, Cell.

[14]  R. Elkon,et al.  BRD7 is a candidate tumour suppressor gene required for p53 function , 2010, Nature Cell Biology.

[15]  Tao Sun,et al.  Common Developmental Requirement for Olig Function Indicates a Motor Neuron/Oligodendrocyte Connection , 2002, Cell.

[16]  C. Cepko,et al.  Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuronal survival in developing mouse cortex , 2001, Nature Neuroscience.

[17]  Oscar Gonzalez-Perez,et al.  Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain , 2006, The Journal of Neuroscience.

[18]  S. Berger,et al.  Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. , 2001, Molecular cell.

[19]  S. Morrison,et al.  Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. , 2005, Genes & development.

[20]  Irving L. Weissman,et al.  Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271 , 2011, Nature.

[21]  Irving L Weissman,et al.  The cancer stem cell hypothesis: a work in progress , 2006, Laboratory Investigation.

[22]  Joanne Chan,et al.  Sonic Hedgehog–Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System , 2000, Neuron.

[23]  David J. Anderson,et al.  The bHLH Transcription Factors OLIG2 and OLIG1 Couple Neuronal and Glial Subtype Specification , 2002, Cell.

[24]  D. Rowitch,et al.  Glioma Stem Cells: A Midterm Exam , 2008, Neuron.

[25]  M. Blasco,et al.  The Ink4/Arf locus is a barrier for iPS cell reprogramming , 2009, Nature.

[26]  A. Gartel,et al.  Transcriptional regulation of the p21((WAF1/CIP1)) gene. , 1999, Experimental cell research.

[27]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[28]  Hongye Liu,et al.  Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma , 2007, Neuron.

[29]  R. Hammond,et al.  Oligodendroglioma: an appraisal of recent data pertaining to diagnosis and treatment. , 1999, Neurosurgery.

[30]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[31]  Manuel Serrano,et al.  A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity , 2009, Nature.

[32]  G. Getz,et al.  DNA microarrays identification of primary and secondary target genes regulated by p53 , 2001, Oncogene.

[33]  Z. Weng,et al.  A Global Map of p53 Transcription-Factor Binding Sites in the Human Genome , 2006, Cell.

[34]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[35]  D. van der Kooy,et al.  p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. , 2005, Genes & development.

[36]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[37]  Catherine L Nutt,et al.  The Oligodendroglial Lineage Marker OLIG2 Is Universally Expressed in Diffuse Gliomas , 2004, Journal of neuropathology and experimental neurology.

[38]  C. Prives,et al.  The p53 pathway , 1999, The Journal of pathology.

[39]  B. Jeremic,et al.  Current and Future Strategies in Radiotherapy of Childhood Low-Grade Glioma of the Brain , 2003, Strahlentherapie und Onkologie.

[40]  M. Götz,et al.  Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6 , 2004, Molecular and Cellular Neuroscience.

[41]  M. Mattson,et al.  Evidence that nucleocytoplasmic Olig2 translocation mediates brain‐injury‐induced differentiation of glial precursors to astrocytes , 2007, Journal of neuroscience research.

[42]  J. Uhm An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2009 .

[43]  Y. Nabeshima,et al.  The Basic Helix-Loop-Helix Factor Olig2 Is Essential for the Development of Motoneuron and Oligodendrocyte Lineages , 2002, Current Biology.

[44]  S. Morrison,et al.  Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution , 2009, Cell.

[45]  C. Marshall,et al.  Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1 , 1998, Nature.

[46]  Y. Yonekawa,et al.  p14ARF Deletion and Methylation in Genetic Pathways to Glioblastomas , 2001, Brain pathology.

[47]  Jean-Yves Delattre,et al.  OLIG2 as a specific marker of oligodendroglial tumour cells , 2001, The Lancet.

[48]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[49]  K. Vousden,et al.  Coping with stress: multiple ways to activate p53 , 2007, Oncogene.

[50]  S. Weiss,et al.  Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. , 1996, Developmental biology.

[51]  Y. Wang,et al.  Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. , 2009, Cancer cell.

[52]  M. Prados,et al.  Treatment of pediatric low-grade gliomas with a nitrosourea-based multiagent chemotherapy regimen , 1997, Journal of Neuro-Oncology.

[53]  S. Vandenberg,et al.  PDGFRα-Positive B Cells Are Neural Stem Cells in the Adult SVZ that Form Glioma-like Growths in Response to Increased PDGF Signaling , 2006, Neuron.

[54]  M. Nakafuku,et al.  Combinatorial Roles of Olig2 and Neurogenin2 in the Coordinated Induction of Pan-Neuronal and Subtype-Specific Properties of Motoneurons , 2001, Neuron.

[55]  K. Aldape,et al.  Contrasting in vivo and in vitro fates of glioblastoma cell subpopulations with amplified EGFR , 2004, Genes, chromosomes & cancer.

[56]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[57]  K. Meletis,et al.  p53 suppresses the self-renewal of adult neural stem cells , 2005, Development.

[58]  R. DePinho,et al.  Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. , 2002, Cancer cell.

[59]  S. Lowe,et al.  Tumor suppressive functions of p53. , 2009, Cold Spring Harbor perspectives in biology.

[60]  James M. Roberts,et al.  CDK inhibitors: positive and negative regulators of G1-phase progression. , 1999, Genes & development.

[61]  L. Donehower,et al.  Spontaneous and carcinogen–induced tumorigenesis in p53–deficient mice , 1993, Nature Genetics.

[62]  David J. Anderson,et al.  Development of NG2 neural progenitor cells requires Olig gene function , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[63]  T. Ichisaka,et al.  Suppression of induced pluripotent stem cell generation by the p53–p21 pathway , 2009, Nature.

[64]  Cellular senescence and cancer , 1999, The Journal of pathology.

[65]  J. Utikal,et al.  Immortalization eliminates a roadblock during cellular reprogramming into iPS cells , 2009, Nature.

[66]  Pierre Hainaut,et al.  Massively regulated genes: the example of TP53 , 2010, The Journal of pathology.

[67]  G. Reifenberger,et al.  Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. , 1993, Cancer research.

[68]  James Brugarolas,et al.  Radiation-induced cell cycle arrest compromised by p21 deficiency , 1995, Nature.

[69]  Tao Sun,et al.  Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. , 2008, Cancer cell.

[70]  L. Donehower,et al.  Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours , 1992, Nature.

[71]  C. Eaves,et al.  Cancer stem cells: Here, there, everywhere? , 2008, Nature.

[72]  J. Cairncross,et al.  Successful chemotherapy for newly diagnosed aggressive oligodendroglioma , 1990, Annals of neurology.