Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines.

The ability of the internal states of a working fluid to be in a coherent superposition is one of the basic properties of a quantum heat engine. It was recently predicted that in the regime of small engine action, this ability can enable a quantum heat engine to produce more power than any equivalent classical heat engine. It was also predicted that in the same regime, the presence of such internal coherence causes different types of quantum heat engines to become thermodynamically equivalent. Here, we use an ensemble of nitrogen vacancy centers in diamond for implementing two types of quantum heat engines, and experimentally observe both effects.

[1]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[2]  T. Debuisschert,et al.  Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging , 2012, 1206.1201.

[3]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[4]  M W Doherty,et al.  Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers. , 2014, Physical review letters.

[5]  Gershon Kurizki,et al.  Universal thermodynamic limit of quantum engine efficiency , 2017 .

[6]  N. Alford,et al.  Continuous-wave room-temperature diamond maser , 2017, Nature.

[7]  Ronnie Kosloff,et al.  Quantum Heat Machines Equivalence, Work Extraction beyond Markovianity, and Strong Coupling via Heat Exchangers , 2016, Entropy.

[8]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[9]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[10]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[11]  N. Yao,et al.  State-selective intersystem crossing in nitrogen-vacancy centers , 2014, 1412.4865.

[12]  E. Lutz,et al.  When is a quantum heat engine quantum? , 2015, 1508.04128.

[13]  Yan-Kai Tzeng,et al.  Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond. , 2007, The journal of physical chemistry. A.

[14]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[15]  J. Pekola,et al.  Information entropic superconducting microcooler , 2007, 0704.0845.

[16]  Gershon Kurizki,et al.  Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines , 2015, Entropy.

[17]  Paul Skrzypczyk,et al.  Entanglement enhances cooling in microscopic quantum refrigerators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Gershon Kurizki,et al.  Quantum engine efficiency bound beyond the second law of thermodynamics , 2017, Nature Communications.

[19]  Harry J. D. Miller,et al.  Leggett-Garg Inequalities for Quantum Fluctuating Work , 2017, Entropy.

[20]  Javier Prior,et al.  Coherence-assisted single-shot cooling by quantum absorption refrigerators , 2015, 1504.01593.

[21]  R. Kosloff,et al.  Quantum Equivalence and Quantum Signatures in Heat Engines , 2015, 1502.06592.

[22]  R. Zambrini,et al.  Irreversible work and inner friction in quantum thermodynamic processes. , 2014, Physical review letters.

[23]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[24]  N. Manson,et al.  Time-averaging within the excited state of the nitrogen-vacancy centre in diamond , 2009, 0902.2256.

[25]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[26]  R. Uzdin Coherence-Induced Reversibility and Collective Operation of Quantum Heat Machines via Coherence Recycling , 2016 .

[27]  Superadiabatic quantum friction suppression in finite-time thermodynamics , 2017, Science Advances.

[28]  G. Kurizki,et al.  Work extraction from heat-powered quantized optomechanical setups , 2014, Scientific Reports.

[29]  U. Seifert,et al.  Periodic thermodynamics of open quantum systems. , 2016, Physical review. E.

[30]  U. Seifert,et al.  Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response. , 2017, Physical review letters.

[31]  Dmitri V. Voronine,et al.  Photosynthetic reaction center as a quantum heat engine , 2013, Proceedings of the National Academy of Sciences.

[32]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[33]  Ronnie Kosloff,et al.  Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  J. Wrachtrup,et al.  Proposal for a room-temperature diamond maser , 2015, Nature communications.

[35]  Keye Zhang,et al.  Quantum optomechanical heat engine. , 2014, Physical review letters.

[36]  C. Lubich,et al.  Error Bounds for Exponential Operator Splittings , 2000 .

[37]  Ronnie Kosloff,et al.  Discrete four-stroke quantum heat engine exploring the origin of friction. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Marlan O Scully,et al.  Quantum heat engine power can be increased by noise-induced coherence , 2011, Proceedings of the National Academy of Sciences.

[39]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[40]  Gleb Maslennikov,et al.  Quantum absorption refrigerator with trapped ions , 2017, Nature Communications.

[41]  J. Pekola,et al.  Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments , 2014, 1412.0898.

[42]  A. Xuereb,et al.  Perspective on quantum thermodynamics , 2015, 1509.01086.

[43]  Neil B. Manson,et al.  The negatively charged nitrogen-vacancy centre in diamond: the electronic solution , 2010, 1008.5224.

[44]  J. Parrondo,et al.  Entropy production and thermodynamic power of the squeezed thermal reservoir. , 2015, Physical review. E.