Visual Coin-Tracking: Tracking of Planar Double-Sided Objects

We introduce a new video analysis problem -- tracking of rigid planar objects in sequences where both their sides are visible. Such coin-like objects often rotate fast with respect to an arbitrary axis producing unique challenges, such as fast incident light and aspect ratio change and rotational motion blur. Despite being common, neither tracking sequences containing coin-like objects nor suitable algorithm have been published. As a second contribution, we present a novel coin-tracking benchmark containing 17 video sequences annotated with object segmentation masks. Experiments show that the sequences differ significantly from the ones encountered in standard tracking datasets. We propose a baseline coin-tracking method based on convolutional neural network segmentation and explicit pose modeling. Its performance confirms that coin-tracking is an open and challenging problem.

[1]  ZissermanAndrew,et al.  The Pascal Visual Object Classes Challenge , 2015 .

[2]  Jiri Matas,et al.  A Novel Performance Evaluation Methodology for Single-Target Trackers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Michael Felsberg,et al.  The Sixth Visual Object Tracking VOT2018 Challenge Results , 2018, ECCV Workshops.

[4]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[5]  Yifan Wu,et al.  Planar Object Tracking in the Wild: A Benchmark , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Jeff Johnson,et al.  Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.

[7]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[8]  Thomas Brox,et al.  Lucid Data Dreaming for Object Tracking , 2017, ArXiv.

[9]  Yuan Dong,et al.  Multi-Hierarchical Independent Correlation Filters For Visual Tracking , 2018, 2020 IEEE International Conference on Multimedia and Expo (ICME).

[10]  Huchuan Lu,et al.  Learning regression and verification networks for long-term visual tracking , 2018, ArXiv.

[11]  Luc Van Gool,et al.  A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Zhenyu He,et al.  The Visual Object Tracking VOT2016 Challenge Results , 2016, ECCV Workshops.

[13]  Michael Felsberg,et al.  Unveiling the Power of Deep Tracking , 2018, ECCV.

[14]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[15]  Wei Wu,et al.  Distractor-aware Siamese Networks for Visual Object Tracking , 2018, ECCV.

[16]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[17]  Luc Van Gool,et al.  The 2017 DAVIS Challenge on Video Object Segmentation , 2017, ArXiv.

[18]  Ning Xu,et al.  YouTube-VOS: Sequence-to-Sequence Video Object Segmentation , 2018, ECCV.

[19]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Thomas Brox,et al.  Lucid Data Dreaming for Video Object Segmentation , 2017, International Journal of Computer Vision.

[21]  Jiri Matas,et al.  Continual Occlusion and Optical Flow Estimation , 2018, ACCV.

[22]  Subhransu Maji,et al.  Semantic contours from inverse detectors , 2011, 2011 International Conference on Computer Vision.

[23]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[24]  Luc Van Gool,et al.  One-Shot Video Object Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Luc Van Gool,et al.  Blazingly Fast Video Object Segmentation with Pixel-Wise Metric Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[26]  Bastian Leibe,et al.  Online Adaptation of Convolutional Neural Networks for Video Object Segmentation , 2017, BMVC.

[27]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Ping Wang,et al.  Robust visual tracking for planar objects using gradient orientation pyramid , 2019, J. Electronic Imaging.