Influence of Radiation on the Properties and the Stability of Hybrid Perovskites

Organic-inorganic perovskites are well suited for optoelectronic applications. In particular, perovskite single and perovskite tandem solar cells with silicon are close to their market entry. Despite their swift rise in efficiency to more than 21%, solar cell lifetimes are way below the needed 25 years. In fact, comparison of the time when the device performance has degraded to 80% of its initial value (T80 lifetime) of numerous solar cells throughout the literature reveals a strongly reduced stability under illumination. Herein, the various detrimental effects are discussed. Most notably, moisture- and heat-related degradation can be mitigated easily by now. Recently, however, several photoinduced degradation mechanisms have been observed. Under illumination, mixed perovskites tend to phase segregate, while, further, oxygen catalyzes deprotonation of the organic cations. Additionally, during illumination photogenerated charge can be trapped in the NH antibonding orbitals causing dissociation of the organic cation. On the other hand, organic-inorganic perovskites exhibit a high radiation hardness that is superior to crystalline silicon. Here, the proposed degradation mechanisms reported in the literature are thoroughly reviewed and the microscopic mechanisms and their implications for solar cells are discussed.

[1]  Aron Walsh,et al.  Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1–xBrx)3 Hybrid Halide Perovskite Alloy , 2016, The journal of physical chemistry letters.

[2]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[3]  Vytautas Getautis,et al.  Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. , 2015, ACS applied materials & interfaces.

[4]  R. Ahuja,et al.  Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites , 2017 .

[5]  Jinsong Huang,et al.  High‐Gain and Low‐Driving‐Voltage Photodetectors Based on Organolead Triiodide Perovskites , 2015, Advanced materials.

[6]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[7]  A. Jen,et al.  Modulation of PEDOT:PSS pH for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability. , 2016, ACS applied materials & interfaces.

[8]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[9]  Robert J. Walters,et al.  Modeling solar cell degradation in space: A comparison of the NRL displacement damage dose and the JPL equivalent fluence approaches † , 2001 .

[10]  V. M. Donnelly,et al.  ArF laser photodissociation of NH3 at 193 nm: internal energy distributions in NH2 X̃2B1 and Ã2A1, and two-photon generatin of NH A 3Π and b 1Σ+ , 1979 .

[11]  Xiaoyang Zhu,et al.  Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). , 2016, ACS nano.

[12]  H. L. Wells Über die Cäsium‐ und Kalium‐Bleihalogenide , 1893 .

[13]  Ullrich Steiner,et al.  Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2‐CH3NH3I‐H2O System , 2016 .

[14]  M. Ko,et al.  Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. , 2015, ACS applied materials & interfaces.

[15]  H. Steinrück,et al.  Interface formation between calcium and electron-irradiated poly(3-hexylthiophene). , 2010, Langmuir : the ACS journal of surfaces and colloids.

[16]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[17]  P. Ceroni,et al.  Influence of the Synthetic Procedures on the Structural and Optical Properties of Mixed-Halide (Br, I) Perovskite Films , 2015 .

[18]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[19]  Yong Cao,et al.  High‐Performance Color‐Tunable Perovskite Light Emitting Devices through Structural Modulation from Bulk to Layered Film , 2017, Advanced materials.

[20]  T. Edvinsson,et al.  Room Temperature as a Goldilocks Environment for CH3NH3PbI3 Perovskite Solar Cells: The Importance of Temperature on Device Performance , 2016 .

[21]  Alessandro Mattoni,et al.  Methylammonium fragmentation in amines as source of localized trap levels and the healing role of Cl in hybrid lead-iodide perovskites , 2015 .

[22]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[23]  Michael D. McGehee,et al.  Light-Induced Phase Segregation in Halide-Perovskite Absorbers , 2016 .

[24]  H. Snaith,et al.  Cation exchange for thin film lead iodide perovskite interconversion , 2016 .

[25]  A. Heeger,et al.  Ultrasensitive solution-processed broad-band photodetectors using CH₃NH₃PbI₃ perovskite hybrids and PbS quantum dots as light harvesters. , 2015, Nanoscale.

[26]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[27]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[28]  Yongli Gao,et al.  Effects of Precursor Ratios and Annealing on Electronic Structure and Surface Composition of CH3NH3PbI3 Perovskite Films , 2016 .

[29]  Matthew R. Leyden,et al.  Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations , 2015 .

[30]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[31]  Linjun Wang,et al.  Formation and evolution of the unexpected PbI2 phase at the interface during the growth of evaporated perovskite films. , 2016, Physical chemistry chemical physics : PCCP.

[32]  Tao Xu,et al.  Pseudohalide-induced moisture tolerance in perovskite CH3 NH3 Pb(SCN)2 I thin films. , 2015, Angewandte Chemie.

[33]  G. Mannino,et al.  Similar Structural Dynamics for the Degradation of CH3 NH3 PbI3 in Air and in Vacuum. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[35]  Jong-Hyun Ahn,et al.  High‐Performance Perovskite–Graphene Hybrid Photodetector , 2015, Advanced materials.

[36]  M. Bär,et al.  Perovskite solar cells: Danger from within , 2017, Nature Energy.

[37]  Yunlin Chen,et al.  Revealing the properties of defects formed by CH3NH2 molecules in organic-inorganic hybrid perovskite MAPbBr3 , 2017 .

[38]  B. Gorman,et al.  Mechanisms of Electron-Beam-Induced Damage in Perovskite Thin Films Revealed by Cathodoluminescence Spectroscopy , 2015 .

[39]  Zhibin Yu,et al.  Single‐Layer Light‐Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films , 2015, Advanced materials.

[40]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[41]  Libai Huang,et al.  Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy , 2017, Science.

[42]  Wolfgang Tress,et al.  Metal Halide Perovskites as Mixed Electronic-Ionic Conductors: Challenges and Opportunities-From Hysteresis to Memristivity. , 2017, The journal of physical chemistry letters.

[43]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[44]  Renqiang Yang,et al.  Efficient planar perovskite solar cells with large fill factor and excellent stability , 2015 .

[45]  T. Dittrich,et al.  Quantitative analysis of room temperature photoluminescence of c-Si wafers excited by short laser pulses , 1999 .

[46]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[47]  Claudine Katan,et al.  Light-activated photocurrent degradation and self-healing in perovskite solar cells , 2016, Nature Communications.

[48]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[49]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[50]  J. Rappich,et al.  Unraveling the Light‐Induced Degradation Mechanisms of CH3NH3PbI3 Perovskite Films , 2017 .

[51]  T. Dittrich,et al.  Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers , 2013 .

[52]  Dan Xie,et al.  A Flexible UV–Vis–NIR Photodetector based on a Perovskite/Conjugated‐Polymer Composite , 2016, Advanced materials.

[53]  Jinsong Huang,et al.  Stabilized Wide Bandgap MAPbBrxI3–x Perovskite by Enhanced Grain Size and Improved Crystallinity , 2015, Advanced science.

[54]  Jun Mei,et al.  Formation of organic–inorganic mixed halide perovskite films by thermal evaporation of PbCl2 and CH3NH3I compounds , 2015 .

[55]  Shiliang Zhou,et al.  Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. , 2014, Chemical communications.

[56]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[57]  Henry J. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, 1504.07025.

[58]  Jay B. Patel,et al.  Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties , 2017 .

[59]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[60]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[61]  W. Windl,et al.  Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors , 2016 .

[62]  M. Grätzel,et al.  Photovoltaic behaviour of lead methylammonium triiodide perovskite solar cells down to 80 K , 2015 .

[63]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[64]  Minhong He,et al.  Chemical decoration of CH3NH3PbI3 perovskites with graphene oxides for photodetector applications. , 2015, Chemical communications.

[65]  N. Zheng,et al.  Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[66]  Edward H. Sargent,et al.  Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering , 2015 .

[67]  Leone Spiccia,et al.  Fatigue behavior of planar CH 3 NH 3 PbI 3 perovskite solar cells revealed by light on/off diurnal cycling , 2016 .

[68]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[69]  T. Dittrich Materials Concepts For Solar Cells , 2014 .

[70]  T. Chen,et al.  Synthesis of tunable-band-gap "Open-Box" halide perovskites by use of anion exchange and internal dissolution procedures. , 2016, Journal of colloid and interface science.

[71]  H. Snaith,et al.  Light-induced annihilation of Frenkel defects in organo-lead halide perovskites , 2016 .

[72]  R. Street,et al.  Radiation induced recombination centers in organic solar cells , 2012 .

[73]  M. Saidaminov,et al.  Fast and Sensitive Solution‐Processed Visible‐Blind Perovskite UV Photodetectors , 2016, Advanced materials.

[74]  Kai Zhu,et al.  Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide. , 2016, Journal of the American Chemical Society.

[75]  T. Dittrich,et al.  Photovoltage in nanocrystalline porous TiO 2 , 2001 .

[76]  Weiqi Wang,et al.  Light induced metastable modification of optical properties in CH3NH3PbI3-xBrx perovskite films: Two-step mechanism , 2016 .

[77]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[78]  M. Kovalenko,et al.  Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry , 2017 .

[79]  Jon M. Azpiroz,et al.  Ab Initio Molecular Dynamics Simulations of Methylammonium Lead Iodide Perovskite Degradation by Water , 2015 .

[80]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[81]  Saif A. Haque,et al.  Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells , 2016 .

[82]  Feng Gao,et al.  Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications , 2016 .

[83]  Mohammad Khaja Nazeeruddin,et al.  Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[84]  R. Demadrille,et al.  A Robust Organic Dye for Dye Sensitized Solar Cells Based on Iodine/Iodide Electrolytes Combining High Efficiency and Outstanding Stability , 2014, Scientific Reports.

[85]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[86]  A. Dobrovolsky,et al.  Super-Resolution Luminescence Microspectroscopy Reveals the Mechanism of Photoinduced Degradation in CH3NH3PbI3 Perovskite Nanocrystals , 2016 .

[87]  Song Jin,et al.  Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. , 2016, Nano letters.

[88]  Liduo Wang,et al.  Morphology-controlled CH3NH3PbI3 films by hexane-assisted one-step solution deposition for hybrid perovskite mesoscopic solar cells with high reproductivity , 2015 .

[89]  L. Wheeler,et al.  Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution , 2016 .

[90]  O. Yamamuro,et al.  p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals , 1992 .

[91]  Shruti A. Agarkar,et al.  Hybrid Perovskite Films by a New Variant of Pulsed Excimer Laser Deposition: A Room-Temperature Dry Process , 2015 .

[92]  Yunlong Li,et al.  Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer , 2015, Nano Research.

[93]  C. Chang,et al.  Enhanced Performance and Stability of Semitransparent Perovskite Solar Cells Using Solution-Processed Thiol-Functionalized Cationic Surfactant as Cathode Buffer Layer , 2015 .

[94]  Jinsong Huang,et al.  Electric‐Field‐Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures , 2016 .

[95]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[96]  T. Lu,et al.  Lasing behaviors upon phase transition in solution-processed perovskite thin films , 2014 .

[97]  L. Korte,et al.  Roadmap and roadblocks for the band gap tunability of metal halide perovskites , 2017 .

[98]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[99]  Jae Su Yu,et al.  Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells , 2016 .

[100]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[101]  Wei Geng,et al.  Uncovering the Veil of the Degradation in Perovskite CH3NH3PbI3 upon Humidity Exposure: A First-Principles Study , 2015 .

[102]  T. Edvinsson,et al.  Determination of Thermal Expansion Coefficients and Locating the Temperature-Induced Phase Transition in Methylammonium Lead Perovskites Using X-ray Diffraction. , 2015, Inorganic chemistry.

[103]  Miaoqiang Lyu,et al.  Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. , 2015, Chemistry.

[104]  J. Moser,et al.  Butyronitrile-based electrolyte for dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[105]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[106]  Shruti A. Agarkar,et al.  Enhancing efficiency of perovskite solar cell via surface microstructuring: Superior grain growth and light harvesting effect , 2015 .

[107]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[108]  William J. Potscavage,et al.  Degradation Mechanisms of Solution‐Processed Planar Perovskite Solar Cells: Thermally Stimulated Current Measurement for Analysis of Carrier Traps , 2016, Advanced materials.

[109]  Fujun Zhang,et al.  Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites , 2015 .

[110]  Nam-Gyu Park,et al.  Stability Issues on Perovskite Solar Cells , 2015 .

[111]  Joop Schoonman,et al.  Organic–inorganic lead halide perovskite solar cell materials: A possible stability problem , 2015 .

[112]  Anders Hagfeldt,et al.  Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells , 2017 .

[113]  Bin Hu,et al.  Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells , 2015 .

[114]  Meng-Che Tsai,et al.  Organometal halide perovskite solar cells: degradation and stability , 2016 .

[115]  D. Abou‐Ras,et al.  Light-Induced Increase of Electron Diffusion Length in a p-n Junction Type CH3NH3PbBr3 Perovskite Solar Cell. , 2015, The journal of physical chemistry letters.

[116]  Yaoguang Rong,et al.  Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells , 2015 .

[117]  Qingsheng Zeng,et al.  Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room‐Temperature Lasing , 2016, Advanced science.

[118]  Lijia Liu,et al.  Self-Alignment of the Methylammonium Cations in Thin-Film Organometal Perovskites. , 2014, The journal of physical chemistry letters.

[119]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[120]  H. Bolink,et al.  Efficient wide band gap double cation – double halide perovskite solar cells , 2017 .

[121]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[122]  M. Grätzel,et al.  Working Principles of Perovskite Photodetectors: Analyzing the Interplay Between Photoconductivity and Voltage‐Driven Energy‐Level Alignment , 2015 .

[123]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[124]  E. Barea,et al.  Effect of different lead precursors on perovskite solar cell performance and stability , 2015 .

[125]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[126]  Federico Bella,et al.  Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers , 2016, Science.

[127]  A. Nurmikko,et al.  A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films. , 2016, ACS nano.

[128]  B. Rech,et al.  Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite , 2016 .

[129]  H. Snaith,et al.  Structural and optical properties of methylammonium lead iodide across the tetragonal to cubic phase transition: implications for perovskite solar cells , 2016 .

[130]  M. Grätzel,et al.  Thermal Behavior of Methylammonium Lead- trihalide Perovskite Photovoltaic Light Harvesters , 2014 .

[131]  Tonio Buonassisi,et al.  Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites , 2015, 1504.02144.

[132]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[133]  Pei Cheng,et al.  Stability of organic solar cells: challenges and strategies. , 2016, Chemical Society reviews.

[134]  T. Emrick,et al.  High Efficiency Tandem Thin-Perovskite/Polymer Solar Cells with a Graded Recombination Layer. , 2016, ACS applied materials & interfaces.

[135]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[136]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[137]  T. Park,et al.  Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells , 2016 .

[138]  L. Quan,et al.  Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics. , 2016, Angewandte Chemie.

[139]  Hao Li,et al.  CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. , 2012, Journal of the American Chemical Society.

[140]  A. Abate,et al.  Stability of Organic Cations in Solution-Processed CH3NH3PbI3 Perovskites: Formation of Modified Surface Layers , 2015 .

[141]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[142]  T. Miyasaka,et al.  Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells , 2015 .

[143]  J. Dobson,et al.  Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3. , 2014, Physical chemistry chemical physics : PCCP.

[144]  Bert Conings,et al.  An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates , 2015 .

[145]  M. Roeffaers,et al.  Degradation of Methylammonium Lead Iodide Perovskite Structures through Light and Electron Beam Driven Ion Migration , 2016, The journal of physical chemistry letters.

[146]  M. Green,et al.  Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite. , 2016, Nanoscale.

[147]  Meng Li,et al.  Controllable Perovskite Crystallization by Water Additive for High‐Performance Solar Cells , 2015 .

[148]  C. Brabec,et al.  Detection of X-ray photons by solution-processed lead halide perovskites , 2015, Nature Photonics.

[149]  Y. Qi,et al.  Pinhole-free hole transport layers significantly improve the stability of MAPbI3-based perovskite solar cells under operating conditions , 2015 .

[150]  P. Troshin,et al.  Exploring the Photovoltaic Performance of All-Inorganic Ag2PbI4/PbI2 Blends. , 2017, The journal of physical chemistry letters.

[151]  Jinli Yang,et al.  Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. , 2017, Inorganic chemistry.

[152]  Jay B. Patel,et al.  Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra , 2015 .

[153]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[154]  T. Hayat,et al.  Enhanced morphology and stability of high-performance perovskite solar cells with ultra-smooth surface and high fill factor via crystal growth engineering , 2017 .

[155]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[156]  R. Heiderhoff,et al.  Self‐Encapsulating Thermostable and Air‐Resilient Semitransparent Perovskite Solar Cells , 2017 .

[157]  W. Lövenich,et al.  Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Low‐Cost and Water‐Free PEDOT Hole‐Extraction Layer , 2015 .

[158]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[159]  T. Markvart Radiation damage in solar cells , 1990 .

[160]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[161]  Yani Chen,et al.  Interfacial engineering by using self-assembled monolayer in mesoporous perovskite solar cell , 2015 .

[162]  Wolfgang Kowalsky,et al.  Water Infiltration in Methylammonium Lead Iodide Perovskite : Fast and Inconspicuous , 2015 .

[163]  S. Ito,et al.  Light stability tests of methylammonium and formamidinium Pb-halide perovskites for solar cell applications , 2015 .

[164]  Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. , 2016, The journal of physical chemistry letters.

[165]  T. Dittrich,et al.  Blocking effect of charge transfer at the porous silicon/silicon interface , 1997 .

[166]  Cesare Soci,et al.  Lead iodide perovskite light-emitting field-effect transistor , 2015, Nature Communications.

[167]  E. Mosconi,et al.  Mobile Ions in Organohalide Perovskites: Interplay of Electronic Structure and Dynamics , 2016, Proceedings of the nanoGe Fall Meeting 2018.

[168]  L. Capone,et al.  The photochemistry of ammonia in the Jovian atmosphere , 1976 .

[169]  Haiying Zheng,et al.  High-temperature shaping perovskite film crystallization for solar cell fast preparation , 2017 .

[170]  J. Plá,et al.  Experimental and theoretical radiation damage studies on crystalline silicon solar cells , 2004 .

[171]  Padhraic Mulligan,et al.  Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals , 2016, Nature Photonics.

[172]  Zhongqiang Zhang,et al.  Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite , 2017 .

[173]  Kwanghee Lee,et al.  Achieving long-term stable perovskite solar cells via ion neutralization , 2016 .

[174]  Ho Won Jang,et al.  Inhibition of Ion Migration for Reliable Operation of Organolead Halide Perovskite‐Based Metal/Semiconductor/Metal Broadband Photodetectors , 2016 .

[175]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[176]  P. Audebert,et al.  Using Low Temperature Photoluminescence Spectroscopy to Investigate CH3NH3PbI3 Hybrid Perovskite Degradation , 2016, Molecules.

[177]  H. Neitzert,et al.  Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell , 2004 .

[178]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[179]  K. Stevenson,et al.  Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI2. , 2017, The journal of physical chemistry letters.

[180]  C. Yuan,et al.  A simple in situ tubular chemical vapor deposition processing of large-scale efficient perovskite solar cells and the research on their novel roll-over phenomenon in J–V curves , 2015 .

[181]  D. Ginger,et al.  Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells , 2015 .

[182]  Zhike Liu,et al.  Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity , 2016, Nature Communications.

[183]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[184]  Jay B. Patel,et al.  Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser , 2016, Advanced materials.

[185]  Iris Visoly-Fisher,et al.  Temperature- and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. , 2015, The journal of physical chemistry letters.

[186]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[187]  X. You,et al.  Sequential Introduction of Cations Deriving Large-Grain Csx FA1-x PbI3 Thin Film for Planar Hybrid Solar Cells: Insight into Phase-Segregation and Thermal-Healing Behavior. , 2017, Small.

[188]  P. Kamat,et al.  Evolution of Chemical Composition, Morphology, and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite under Ambient Conditions , 2016 .

[189]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[190]  Xiujian Zhao,et al.  Improved air stability of perovskite hybrid solar cells via blending poly(dimethylsiloxane)–urea copolymers , 2017 .

[191]  Xingzhong Zhao,et al.  Stable Organic–Inorganic Perovskite Solar Cells without Hole‐Conductor Layer Achieved via Cell Structure Design and Contact Engineering , 2016 .

[192]  Ivan Mora-Sero,et al.  Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer. , 2015, The journal of physical chemistry letters.

[193]  Oleksandr Voznyy,et al.  Highly Efficient Perovskite‐Quantum‐Dot Light‐Emitting Diodes by Surface Engineering , 2016, Advanced materials.

[194]  David Cahen,et al.  How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3 Cells. , 2015, The journal of physical chemistry letters.

[195]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[196]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[197]  A. Walsh,et al.  Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide , 2015, 1504.07508.

[198]  Rebecca A. Belisle,et al.  Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.

[199]  Yan Wang,et al.  Solution-processed photodetectors based on organic–inorganic hybrid perovskite and nanocrystalline graphite , 2016, Nanotechnology.

[200]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[201]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[202]  K. Meerholz,et al.  Impact of Film Stoichiometry on the Ionization Energy and Electronic Structure of CH3NH3PbI3 Perovskites , 2016, Advanced materials.

[203]  Antonio Abate,et al.  The effect of illumination on the formation of metal halide perovskite films , 2017, Nature.

[204]  G. Fang,et al.  Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers , 2015 .

[205]  Fujun Zhang,et al.  Dynamic interface charge governing the current-voltage hysteresis in perovskite solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[206]  Zhihai Liu,et al.  A transparent poly(3,4-ethylenedioxylenethiophene):poly(styrene sulfonate) cathode for low temperature processed, metal-oxide free perovskite solar cells , 2017 .

[207]  A. Zaban,et al.  Photoinduced Reversible Structural Transformations in Free-Standing CH3NH3PbI3 Perovskite Films. , 2015, The journal of physical chemistry letters.

[208]  D. Umeyama,et al.  Chemical Approaches to Addressing the Instability and Toxicity of Lead-Halide Perovskite Absorbers. , 2017, Inorganic chemistry.

[209]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[210]  David T. Limmer,et al.  Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. , 2016, Nano letters.

[211]  F. H. Taylor,et al.  Defects and oxide ion migration in the solid oxide fuel cell cathode material LaFeO3 , 2016 .

[212]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[213]  S. Nehra,et al.  The physics of photon induced degradation of perovskite solar cells , 2016 .

[214]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[215]  E. Handick,et al.  Observation and Mediation of the Presence of Metallic Lead in Organic-Inorganic Perovskite Films. , 2015, ACS applied materials & interfaces.

[216]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[217]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[218]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[219]  Trisha L. Andrew,et al.  Color-Pure Violet-Light-Emitting Diodes Based on Layered Lead Halide Perovskite Nanoplates. , 2016, ACS nano.

[220]  S. Pang,et al.  Crystal Morphologies of Organolead Trihalide in Mesoscopic/Planar Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[221]  C. Brabec,et al.  Perovskites target X-ray detection , 2016, Nature Photonics.

[222]  N. Koch,et al.  Impact of White Light Illumination on the Electronic and Chemical Structures of Mixed Halide and Single Crystal Perovskites , 2017 .

[223]  Wen-Guang Li,et al.  In Situ Growth of 120 cm2 CH3NH3PbBr3 Perovskite Crystal Film on FTO Glass for Narrowband‐Photodetectors , 2017, Advanced materials.

[224]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[225]  M. Green,et al.  Light Illumination Induced Photoluminescence Enhancement and Quenching in Lead Halide Perovskite , 2017 .

[226]  B. Rech,et al.  Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[227]  David B. Mitzi,et al.  Effects of Cd Diffusion and Doping in High-Performance Perovskite Solar Cells Using CdS as Electron Transport Layer , 2016 .

[228]  G. Landi,et al.  Radiation Hardness and Self‐Healing of Perovskite Solar Cells , 2016, Advanced materials.

[229]  T. Chen,et al.  All-Inorganic Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[230]  H. Haupt,et al.  Darstellung und Kristallstruktur von Rubidiumtrijodoplumbat(II) , 1974 .

[231]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[232]  Jing Wei,et al.  Reversible Healing Effect of Water Molecules on Fully Crystallized Metal–Halide Perovskite Film , 2016 .

[233]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[234]  M. Gorgoi,et al.  Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. , 2014, The journal of physical chemistry letters.

[235]  F. Giustino,et al.  Toward Lead-Free Perovskite Solar Cells , 2016 .

[236]  C. Ballif,et al.  In Situ TEM Analysis of Organic-Inorganic Metal-Halide Perovskite Solar Cells under Electrical Bias. , 2016, Nano letters.

[237]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[238]  J. Loferski,et al.  Radiation damage in Ge and Si detected by carrier lifetime changes: Damage thresholds , 1958 .

[239]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[240]  Chang-Lyoul Lee,et al.  Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[241]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[242]  Thuc‐Quyen Nguyen,et al.  Assessing the stability of high performance solution processed small molecule solar cells , 2017 .

[243]  Zong-Liang Tseng,et al.  High efficiency stable inverted perovskite solar cells without current hysteresis , 2015 .

[244]  H. Rensmo,et al.  Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation , 2015 .

[245]  Suneth C. Watthage,et al.  Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites , 2015 .

[246]  Bo Qu,et al.  A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. , 2014, Chemical communications.

[247]  Chun–Chen Yang,et al.  Perovskite photovoltaics featuring solution-processable TiO2 as an interfacial electron-transporting layer display to improve performance and stability. , 2014, Nanoscale.

[248]  John B. Asbury,et al.  Random lasing in organo-lead halide perovskite microcrystal networks , 2014 .

[249]  Suren A. Gevorgyan,et al.  Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .

[250]  Liduo Wang,et al.  High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal , 2015, Scientific Reports.

[251]  M. Grätzel,et al.  Additive-Free Transparent Triarylamine-Based Polymeric Hole-Transport Materials for Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[252]  A. Di Carlo,et al.  Interface and Composition Analysis on Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[253]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[254]  Linghai Zhang,et al.  Ab Initio Study of Interaction of Water, Hydroxyl Radicals, and Hydroxide Ions with CH3NH3PbI3 and CH3NH3PbBr3 Surfaces , 2015 .

[255]  Hans Desilvestro,et al.  Long-term stability of dye solar cells , 2011 .

[256]  Meicheng Li,et al.  Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface , 2016 .

[257]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[258]  B. Rech,et al.  Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells , 2016 .

[259]  G. Landi,et al.  Defect Dynamics in Proton Irradiated CH3NH3PbI3 Perovskite Solar Cells , 2017 .

[260]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[261]  J. R. Srour,et al.  Review of displacement damage effects in silicon devices , 2003 .

[262]  Peng Wang,et al.  Stable and efficient dye-sensitized solar cells: photophysical and electrical characterizations , 2010 .

[263]  Edward H Sargent,et al.  Conformal organohalide perovskites enable lasing on spherical resonators. , 2014, ACS nano.

[264]  Heping Shen,et al.  Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[265]  Dae Ho Song,et al.  Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process , 2014, Advanced materials.

[266]  J. Galisteo‐López,et al.  Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry letters.

[267]  Kaibo Zheng,et al.  Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. , 2015, Physical chemistry chemical physics : PCCP.

[268]  Chang Yoon,et al.  Linear Network Model of Gene Regulation for the Yeast Cell Cycle , 2004 .

[269]  C. Brabec,et al.  Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors , 2016 .