Topology optimization with geometrically non-linear based on the element free Galerkin method

In this article, the element free Galerkin (EFG) method is applied to carry out the topology optimization of the geometrically non-linear continuum structures. In EFG method, the moving least squares shape function is used to approximate the displacements. The 2D geometrically non-linear formulation is presented based on the EFG method. The penalty method is explored to enforce the essential boundary conditions. Considering the relative density of nodes as design variables, the minimization of compliance as an objective function, the mathematical formulation of the topology optimization is developed using the solid isotropic microstructures with penalization interpolation scheme. Sensitivity of the objective function is derived based on the adjoint method. Numerical examples show that the proposed approach is feasible and effective for the topology optimization of the geometrically non-linear continuum structures.

[1]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[2]  W. Gao,et al.  Topology optimization of structures using meshless density variable approximants , 2013 .

[3]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[4]  Z. Kang,et al.  Structural topology optimization based on non-local Shepard interpolation of density field , 2011 .

[5]  H. Gea,et al.  Topology optimization of nonlinear structures , 2004 .

[6]  Satya N. Atluri,et al.  The MLPG Mixed Collocation Method for Material Orientation and Topology Optimization of Anisotropic Solids and Structures , 2008 .

[7]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[8]  T. Belytschko,et al.  A three-dimensional explicit element-free galerkin method , 1997 .

[9]  M. Zhou,et al.  Checkerboard and minimum member size control in topology optimization , 2001 .

[10]  Gui-Rong Liu,et al.  a Mesh-Free Method for Static and Free Vibration Analyses of Thin Plates of Complicated Shape , 2001 .

[11]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[12]  Z. Kang,et al.  A nodal variable method of structural topology optimization based on Shepard interpolant , 2012 .

[13]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[14]  Li Guangyao,et al.  The topology optimization design for continuum structures based on the element free Galerkin method , 2010 .

[15]  Jinxiong Zhou,et al.  Meshless approximation combined with implicit topology description for optimization of continua , 2008 .

[16]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[17]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[18]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[19]  S. Rahmatalla,et al.  A Q4/Q4 continuum structural topology optimization implementation , 2004 .

[20]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[21]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[22]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[23]  K. Matsui,et al.  Continuous approximation of material distribution for topology optimization , 2004 .

[24]  Seonho Cho,et al.  Topology design optimization of geometrically non-linear structures using meshfree method , 2006 .

[25]  W. Gao,et al.  Structural shape and topology optimization using a meshless Galerkin level set method , 2012 .

[26]  O. Sigmund,et al.  Stiffness design of geometrically nonlinear structures using topology optimization , 2000 .

[27]  T. E. Bruns,et al.  Numerical methods for the topology optimization of structures that exhibit snap‐through , 2002 .

[28]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .