Recent advances in functionalized composite solid materials for carbon dioxide capture

Increasing energy demand triggered by industrialization has led to high carbon dioxide (CO2) emission into the environment, causes rise in earth temperature resulting in global warming. Therefore, there is urgent need to develop a cost effective methods and materials for its sequestration from point source and reduce its impact on the environment. This paper reviewed the recent development in functionalized composites for CO2 capture. The composites can help to develop more efficient technologies and cost effective materials for CO2 capture in view of the exponential growing demand for energy. Myriad of researchers have focused interest on the development of novel materials to trap CO2 using solid sorbents that appear promising. The composite adsorbents have superficial properties in terms of surface area, pore characteristic, adsorption capacity and stability at high temperature. The superior properties can be achieved by surface modification via activation or functionalization. The study revealed that functionalized composites provides superficial properties in terms of surface area, microporosity and high adsorption capacity for CO2 sequestration. However, the development of carbon based composite derived from lignocellulose biomass and understanding the mechanism and kinetics of CO2 onto functionalized composite have been graced with few research and needs to be explored further.

[1]  Abass A. Olajire,et al.  CO2 capture and separation technologies for end-of-pipe applications – A review , 2010 .

[2]  Yukishige Maezawa,et al.  Novel CO2 Absorbents Using Lithium‐Containing Oxide , 2005 .

[3]  S. Su,et al.  CO2 capture capacities of activated carbon fibre-phenolic resin composites , 2009 .

[4]  H. Kanoh,et al.  CO2 Capture by Carbon Aerogel–Potassium Carbonate Nanocomposites , 2016 .

[5]  J. Senker,et al.  Microporous Functionalized Triazine-Based Polyimides with High CO2 Capture Capacity , 2013 .

[6]  Soo-Jin Park,et al.  Isothermal exfoliation of graphene oxide by a new carbon dioxide pressure swing method , 2014 .

[7]  J. I. Eze,et al.  Maximizing the potentials of biogas through upgrading , 2010 .

[8]  Jun Zhang,et al.  Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas , 2008 .

[9]  Chungsying Lu,et al.  Capture of CO2 from flue gas via multiwalled carbon nanotubes. , 2009, The Science of the total environment.

[10]  H. Shokrollahi,et al.  Physics, chemistry and synthesis methods of nanostructured bismuth ferrite (BiFeO3) as a ferroelectro-magnetic material , 2012 .

[11]  Xiaoze Du,et al.  CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns , 2016 .

[12]  P. Khare,et al.  A comparison between CO2 capturing capacities of fly ash based composites of MEA/DMA and DEA/DMA , 2013 .

[13]  S. Yin,et al.  Synthesis of amine‐modified solid Fe‐Zr adsorbents for CO2 adsorption , 2016 .

[14]  A. Barron,et al.  Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes. , 2008, ACS nano.

[15]  G. Busca,et al.  On the mechanism of adsorption and separation of CO2 on LTA zeolites : An IR investigation , 2008 .

[16]  Ermete Antolini,et al.  Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells , 2016 .

[17]  A. Russell,et al.  Review of recent advances in carbon dioxide separation and capture , 2013 .

[18]  Yan Cao,et al.  CO2 Capture on Metal-Organic Framework and Graphene Oxide Composite Using a High-Pressure Static Adsorption Apparatus , 2014 .

[19]  Yichao Lin,et al.  Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture , 2012 .

[20]  Wan Mohd Ashri Wan Daud,et al.  A review on surface modification of activated carbon for carbon dioxide adsorption , 2010 .

[21]  S. Yusup,et al.  An overview of activated carbons utilization for the post-combustion carbon dioxide capture , 2016 .

[22]  J. Poston,et al.  Adsorption of CO2 on molecular sieves and activated carbon , 2001 .

[23]  Marta G. Plaza,et al.  Developing almond shell-derived activated carbons as CO2 adsorbents , 2010 .

[24]  M. Yen,et al.  Sol–gel synthesis of organic–inorganic hybrid materials comprising boehmite, silica, and thiazole dye , 2012 .

[25]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[26]  Chungsying Lu,et al.  Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes , 2010 .

[27]  Mansooreh Soleimani,et al.  Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions , 2014, TheScientificWorldJournal.

[28]  Tao Chen,et al.  Role of micropores and nitrogen-containing groups in CO2 adsorption on indole-3-butyric acid potassium derived carbons , 2016 .

[29]  M. Fan,et al.  Use of a Robust and Inexpensive Nanoporous TiO2 for Pre-combustion CO2 Separation , 2013 .

[30]  P. Harlick,et al.  An experimental adsorbent screening study for CO2 removal from N2 , 2004 .

[31]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[32]  Jun Huang,et al.  Activated carbons and amine-modified materials for carbon dioxide capture — a review , 2013, Frontiers of Environmental Science & Engineering.

[33]  A. Okunev,et al.  Direct CO2 capture from ambient air by K2CO3/alumina composite sorbent for synthesis of renewable methane , 2015 .

[34]  Almahdi A. Alhwaige,et al.  Carbon Aerogels with Excellent CO2 Adsorption Capacity Synthesized from Clay-Reinforced Biobased Chitosan-Polybenzoxazine Nanocomposites , 2016 .

[35]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[36]  Young Eun Kim,et al.  Heat of absorption and absorption capacity of CO2 in aqueous solutions of amine containing multiple amino groups , 2014 .

[37]  Chunshan Song,et al.  Development of a new clay supported polyethylenimine composite for CO2 capture , 2014 .

[38]  L. Giraldo,et al.  Chemical modification of activated carbon monoliths for CO2 adsorption , 2013, Journal of Thermal Analysis and Calorimetry.

[39]  Habibollah Younesi,et al.  Evaluation of CO2 adsorption with eucalyptus wood based activated carbon modified by ammonia solution through heat treatment , 2014 .

[40]  Z. Derriche,et al.  Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: isotherms and isosteric heat. , 2004, Journal of colloid and interface science.

[41]  C. Lai Anodic CaO-TiO 2 nanotubes composite film for low temperature CO 2 adsorption , 2014 .

[42]  S. Ramaprabhu,et al.  Nano magnetite decorated multiwalled carbon nanotubes: a robust nanomaterial for enhanced carbon dioxide adsorption , 2011 .

[43]  J. J. Pis,et al.  Surface modification of activated carbons for CO2 capture , 2008 .

[44]  S. Hawkins,et al.  Carbon nanotube modified carbon composite monoliths as superior adsorbents for carbon dioxide capture , 2013 .

[45]  Douglas M. Ruthven,et al.  Principles of Adsorption and Adsorption Processes , 1984 .

[46]  Zou Yong,et al.  Adsorption of carbon dioxide at high temperature—a review , 2002 .

[47]  A. Sayari,et al.  Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[48]  Soo-Jin Park,et al.  A review on solid adsorbents for carbon dioxide capture , 2015 .

[49]  M. Lillo-Ródenas,et al.  High surface area materials prepared from sewage sludge-based precursors. , 2006, Chemosphere.

[50]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[51]  B. Gao,et al.  Carbon-Based Adsorbents for Postcombustion CO2 Capture: A Critical Review. , 2016, Environmental science & technology.

[52]  S. Gross,et al.  Hybrid Materials Based on the Embedding of Organically Modified Transition Metal Oxoclusters or Polyoxometalates into Polymers for Functional Applications: A Review , 2014, Materials.

[53]  A. Samanta,et al.  Post-Combustion CO2 Capture Using Solid Sorbents: A Review , 2012 .

[54]  Jun-Seok Bae,et al.  Application of carbon fibre composites to CO2 capture from flue gas , 2013 .

[55]  A. Mohamed,et al.  Preparation of carbon molecular sieve from lignocellulosic biomass: A review , 2010 .

[56]  Bilal Hameed,et al.  Fixed-bed column adsorption of carbon dioxide by sodium hydroxide modified activated alumina , 2013 .

[57]  A. Olejniczak,et al.  The influence of microporosity creation in highly mesoporous N-containing carbons obtained from chitosan on their catalytic and electrochemical properties , 2014 .

[58]  Yen‐Hua Chen,et al.  Amine modification on kaolinites to enhance CO₂ adsorption. , 2014, Journal of colloid and interface science.

[59]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[60]  Marta G. Plaza,et al.  Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture , 2013 .

[61]  Chao-Hsi Chen,et al.  Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure , 2012 .

[62]  M. Soleimani,et al.  Carbon Dioxide Capture and Storage: A General Review on Adsorbents , 2012 .

[63]  J. J. Pis,et al.  Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture , 2014 .

[64]  S. Hirano,et al.  Efficient Recovery of Carbon Dioxide from Flue Gases of Coal-Fired Power Plants by Cyclic Fixed-Bed Operations over K2CO3-on-Carbon , 1998 .

[65]  W. Xing,et al.  N-containing activated carbons for CO2 capture , 2013 .

[66]  S. Su,et al.  Post combustion CO2 capture by carbon fibre monolithic adsorbents , 2009 .

[67]  Colin E. Snape,et al.  CO2 capture using some fly ash-derived carbon materials , 2005 .

[68]  E. Rosenberg,et al.  Nanostructured Macromolecular Metal Containing Materials in Catalysis , 2011 .

[69]  A. Ghoreyshi,et al.  Improving CO2 adsorption onto activated carbon through functionalization by chitosan and triethylenetetramine , 2014 .

[70]  Kaimin Li,et al.  The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents , 2014 .

[71]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[72]  C. Lai,et al.  Tunable band gap energy of Mn-doped ZnO nanoparticles using the coprecipitation technique , 2014 .

[73]  Xiangping Zhang,et al.  Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis , 2013 .

[74]  Edward S. Rubin,et al.  Prospects for Carbon Capture and Sequestration Technologies Assuming Their Technological Learning , 2004 .

[75]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[76]  K. Rezwan,et al.  Tailoring surfaces of hybrid ceramics for gas adsorption – From alkanes to CO2 , 2014 .

[77]  J. A. Cecilia,et al.  Carbon dioxide adsorption on micro-mesoporous composite materials of ZSM-12/MCM-48 type: The role of the contents of zeolite and functionalized amine , 2015 .

[78]  Shi Chen,et al.  Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity , 2015 .

[79]  Francesco Pilati,et al.  Disposable Fluorescence Optical pH Sensor for Near Neutral Solutions , 2013, Sensors.

[80]  Mietek Jaroniec,et al.  Coconut shell-based microporous carbons for CO2 capture , 2013 .

[81]  Antonio B. Fuertes,et al.  Sustainable porous carbons with a superior performance for CO2 capture , 2011 .

[82]  Edward S. Rubin,et al.  Cost and performance of fossil fuel power plants with CO2 capture and storage , 2007 .

[83]  C. Petit,et al.  Engineering the surface of a new class of adsorbents: metal-organic framework/graphite oxide composites. , 2015, Journal of colloid and interface science.

[84]  G. Abotsi,et al.  Ammonia: a reactive medium for catalysed coal gasification , 1994 .

[85]  B. Spigarelli,et al.  Opportunities and challenges in carbon dioxide capture , 2013 .

[86]  Wenchuan Wang,et al.  A hybrid absorption–adsorption method to efficiently capture carbon , 2014, Nature Communications.

[87]  S. Komarneni,et al.  Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment , 2014 .

[88]  A. H. Shamsuddin,et al.  Cofiring biomass with coal: Opportunities for Malaysia , 2013 .

[89]  Zifeng Yan,et al.  Amine-Modified SBA-15: Effect of Pore Structure on the Performance for CO2 Capture , 2011 .

[90]  Z. Tang,et al.  Solid Adsorbents for Low-Temperature CO2 Capture with Low-Energy Penalties Leading to More Effective Integrated Solutions for Power Generation and Industrial Processes , 2015, Front. Energy Res..

[91]  Yuehe Lin,et al.  Synthesis and CO2 sorption properties of pure and modified lithium zirconate , 2004 .

[92]  Yee Soong,et al.  Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for CO2 Capture , 2006 .

[93]  M. Titirici,et al.  High-performance CO2 sorbents from algae , 2012 .

[94]  Sukumar Devotta,et al.  Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures , 2007 .

[95]  Dianne E. Wiley,et al.  Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption , 2008 .

[96]  Md. Azharul Islam,et al.  Adsorption of carbon dioxide by sodium hydroxide-modified granular coconut shell activated carbon in a fixed bed , 2014 .

[97]  Sultan M. Al-Salem Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view , 2015 .

[98]  Yuhan Sun,et al.  A review of research progress on CO2 capture, storage, and utilization in Chinese Academy of Sciences , 2013 .

[99]  D. Azevedo,et al.  Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X , 2011 .

[100]  Q. Guo,et al.  Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture , 2015 .

[101]  Yoichi Kaya,et al.  The role of CO2 removal and disposal , 1995 .

[102]  A. L. Ortiz,et al.  Porosity Development in Activated Carbons Prepared from Walnut Shells by Carbon Dioxide or Steam Activation , 2009 .

[103]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[104]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[105]  A. Rodrigues,et al.  Carbon dioxide-nitrogen separation through pressure swing adsorption , 2011 .

[106]  Masahiro Kato,et al.  Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations , 2002 .

[107]  Covadonga Pevida,et al.  Preparation of carbon dioxide adsorbents from the chemical activation of urea–formaldehyde and melamine–formaldehyde resins , 2007 .

[108]  M. Meyyappan,et al.  CO2 adsorption in single-walled carbon nanotubes , 2003 .

[109]  M. Gearing,et al.  Correction: Corrigendum: Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model , 2014, Nature Communications.

[110]  Nirmalya Moitra,et al.  Hybrid materials: versatile matrices for supporting homogeneous catalysts , 2010 .

[111]  Jun-Seok Bae,et al.  Macadamia nut shell-derived carbon composites for post combustion CO2 capture , 2013 .

[112]  Antoni W. Morawski,et al.  High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption , 2004 .

[113]  E. Bourhis,et al.  Mechanical properties of hybrid organicinorganic materials , 2005 .

[114]  Perla B. Balbuena,et al.  Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks , 2011 .

[115]  Usama Al-mulali,et al.  Factors affecting CO2 emission in the Middle East: A panel data analysis , 2012 .

[116]  Liang Yu,et al.  Synthesis of binderless zeolite X microspheres and their CO2 adsorption properties , 2013 .

[117]  Salvador Ordóñez,et al.  Enhancement of the CO2 Retention Capacity of Y Zeolites by Na and Cs Treatments: Effect of Adsorption Temperature and Water Treatment , 2008 .

[118]  Maryam Takht Ravanchi,et al.  Conversion of carbon dioxide to valuable petrochemicals: An approach to clean development mechanism , 2011 .

[119]  Huiling Ding,et al.  Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture , 2013 .

[120]  Zhong Tang,et al.  Sorbents for CO2 capture from high carbon fly ashes. , 2008, Waste management.

[121]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[122]  Jitong Wang,et al.  Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture , 2016 .

[123]  Prakash D. Vaidya,et al.  Secondary amines for CO2 capture: A kinetic investigation using N-ethylmonoethanolamine , 2012 .

[124]  Ennio Macchi,et al.  CO2 capture in natural gas combined cycle with SEWGS. Part B: Economic assessment , 2013 .

[125]  K. Patchigolla,et al.  Minor and trace element emissions from post-combustion CO2 capture from coal: Experimental and equilibrium calculations , 2014 .

[126]  Shurong Wang,et al.  Organic/inorganic hybrid sensors: A review , 2013 .

[127]  Q. Guo,et al.  Mixed amine-modified MCM-41 sorbents for CO2 capture , 2015 .

[128]  Monica Puccini,et al.  Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration , 2013 .

[129]  Chong Kul Ryu,et al.  CO2 absorption and regeneration of alkali metal-based solid sorbents , 2006 .

[130]  Dianne E. Wiley,et al.  Cost competitive membrane—cryogenic post-combustion carbon capture , 2013 .

[131]  H. Bhunia,et al.  Novel nitrogen enriched porous carbon adsorbents for CO2 capture: Breakthrough adsorption study , 2016 .

[132]  J. A. Menéndez,et al.  Designing Nanostructured Carbon Xerogels , 2011 .

[133]  Yi-Ming Wei,et al.  Is it possible for China to reduce its total CO2 emissions , 2015 .

[134]  B. D. Crittenden,et al.  Adsorption technology and design , 1998 .

[135]  W. Daud,et al.  Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation , 2011 .

[136]  Yu Han,et al.  Superior Capture of CO2 Achieved by Introducing Extra-framework Cations into N-doped Microporous Carbon , 2012 .

[137]  S. Snelgrove,et al.  Medication Monitoring for People with Dementia in Care Homes: The Feasibility and Clinical Impact of Nurse-Led Monitoring , 2014, TheScientificWorldJournal.

[138]  A. Henni,et al.  Review of Recent Developments in CO2 Capture Using Solid Materials: Metal Organic Frameworks (MOFs) , 2016 .

[139]  S. Su,et al.  A site trial demonstration of CO2 capture from real flue gas by novel carbon fibre composite monolith adsorbents , 2015 .

[140]  Mathieu Etienne,et al.  Electrochemical approaches for the fabrication and/or characterization of pure and hybrid templated mesoporous oxide thin films: a review , 2013, Analytical and Bioanalytical Chemistry.

[141]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[142]  T. Uemura,et al.  Polymerization reactions in porous coordination polymers. , 2009, Chemical Society reviews.

[143]  Antonio Rizzo,et al.  On the molecular electric quadrupole moment and the electric-field-gradient-induced birefringence of CO2 and CS2 , 2000 .

[144]  Zhonghua Hu,et al.  Novel activation process for preparing highly microporous and mesoporous activated carbons , 2001 .

[145]  D. D’Alessandro,et al.  Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. , 2009, Journal of the American Chemical Society.

[146]  F. Rubiera,et al.  Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture , 2008 .

[147]  S. Hawkins,et al.  Expanded graphite/phenolic resin-based carbon composite adsorbents for post-combustion CO2 capture , 2015 .

[148]  R. Gorte,et al.  Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites , 1996 .

[149]  S. Jhung,et al.  Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. , 2013, Journal of hazardous materials.

[150]  J. Gražulevičius,et al.  Synthesis and cationic photopolymerization of electroactive monomers containing functional groups , 2005 .

[151]  S. Rayalu,et al.  In situ nitrogen enriched carbon for carbon dioxide capture , 2010 .

[152]  Desmond E. Schipper,et al.  Asphalt-derived high surface area activated porous carbons for carbon dioxide capture. , 2015, ACS applied materials & interfaces.

[153]  David C. Miller,et al.  Comparisons of amine solvents for post-combustion CO2 capture: A multi-objective analysis approach , 2013 .

[154]  A. Policicchio,et al.  Cu-BTC/aminated graphite oxide composites as high-efficiency CO2 capture media. , 2014, ACS applied materials & interfaces.

[155]  Joaquín Silvestre-Albero,et al.  High-surface-area carbon molecular sieves for selective CO(2) adsorption. , 2010, ChemSusChem.

[156]  M. Shaijumon,et al.  Activated graphene-derived porous carbon with exceptional gas adsorption properties , 2015 .

[157]  Subhash Bhatia,et al.  Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials , 2012 .

[158]  Mir-Akbar Hessami,et al.  A study of methods of carbon dioxide capture and sequestration: the sustainability of a photosynthetic bioreactor approach , 2004 .

[159]  Q. Guo,et al.  Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture , 2015 .

[160]  R. Balasubramanian,et al.  Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites , 2015 .

[161]  P. Feng,et al.  High CO2 and H2 Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral Cages , 2012 .

[162]  Christopher W. Jones,et al.  High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules , 2011 .

[163]  Sushant Agarwal,et al.  Nanoclay-Based Solid Sorbents for CO2 Capture , 2013 .

[164]  Mai Bui,et al.  Dynamic modelling and optimisation of flexible operation in post-combustion CO2 capture plants - A review , 2014, Comput. Chem. Eng..

[165]  S. Hafeez,et al.  CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study. , 2015, Journal of environmental sciences.

[166]  S. Hawkins,et al.  Preparation optimization of carbon nanotube/carbon fiber incorporated carbon composite monoliths for high CO2 adsorption capacity , 2015 .

[167]  Bruce G. Miller,et al.  Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture , 2002 .

[168]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[169]  Youssef Belmabkhout,et al.  Flue gas treatment via CO2 adsorption , 2011 .

[170]  M. Anbia,et al.  Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide , 2012 .

[171]  D. Zhao,et al.  Characteristics of the synthetic heulandite-clinoptilolite family of zeolites , 1998 .

[172]  Jun Zhang,et al.  Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture , 2008 .

[173]  Shuixia Chen,et al.  Preparation and characterization of amine-functionalized sugarcane bagasse for CO2 capture. , 2016, Journal of environmental management.

[174]  E. Rubin,et al.  Sorbent Cost and Performance in CO2 Capture Systems , 2004 .

[175]  C. Phalakornkule,et al.  Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures , 2016 .

[176]  M. Jaroniec,et al.  Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO2 at ambient conditions , 2014, Adsorption.

[177]  Bahar Celikkol Erbas,et al.  How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis , 2015 .

[178]  J. S. Hoffman,et al.  Study of Regenerable Sorbents for CO2 Capture , 2001 .