High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein–Gordon equation

Abstract In this paper, we design a linear-compact conservative numerical scheme which preserves the original conservative properties to solve the Klein–Gordon–Schrodinger equation. The proposed scheme is based on using the finite difference method. The scheme is three-level and linear-implicit. Priori estimate and the convergence of the finite difference approximate solutions are discussed by the discrete energy method. Numerical results demonstrate that the present scheme is conservative, efficient and of high accuracy.

[1]  M. Dehghan,et al.  Numerical solution of the Yukawa-coupled Klein–Gordon–Schrödinger equations via a Chebyshev pseudospectral multidomain method , 2012 .

[2]  Qianshun Chang,et al.  A Conservative Difference Scheme for the Zakharov Equations , 1994 .

[3]  Ruxun Liu,et al.  Numerical simulation of interaction between Schrödinger field and Klein-Gordon field by multisymplectic method , 2006, Appl. Math. Comput..

[4]  Masayoshi Tsutsumi,et al.  On coupled Klein-Gordon-Schrödinger equations, II , 1978 .

[5]  Piotr Biler Attractors for the system of Schro¨dinger and Klein-Gordon equations with Yukawa coupling , 1990 .

[6]  R. Glassey Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension , 1992 .

[7]  Li Yang,et al.  Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations , 2007, J. Comput. Phys..

[8]  Qianshun Chang,et al.  Finite difference method for generalized Zakharov equations , 1995 .

[9]  Ashraf Darwish,et al.  A series of new explicit exact solutions for the coupled Klein–Gordon–Schrödinger equations , 2004 .

[10]  Jialin Hong,et al.  Numerical comparison of five difference schemes for coupled Klein -Gordon -Schrödinger equations in quantum physics , 2007 .

[11]  Luming Zhang Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension , 2005, Appl. Math. Comput..

[12]  Luming Zhang,et al.  A class of conservative orthogonal spline collocation schemes for solving coupled Klein-Gordon-Schrödinger equations , 2008, Appl. Math. Comput..

[13]  Mehdi Dehghan,et al.  Fourth-order compact solution of the nonlinear Klein-Gordon equation , 2009, Numerical Algorithms.

[14]  Shanshan Jiang,et al.  Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations , 2009, J. Comput. Phys..

[15]  Masahito Ohta,et al.  Stability of stationary states for the coupled Klein-Gordon-Schro¨dinger equations , 1996 .

[16]  Tohru Ozawa,et al.  Asymptotic Behavior of Solutions for the Coupled Klein–Gordon–Schrödinger Equations , 1994 .

[17]  Yali Duan,et al.  Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrödinger equations , 2010, Comput. Phys. Commun..

[18]  Wang Ting,et al.  Unconditional convergence of two conservative compact difference schemes for non-linear Schrdinger equation in one dimension , 2011 .

[19]  Wolf von Wahl,et al.  On the global strong solutions of coupled Klein-Gordon-Schrödinger equations , 1987 .

[20]  R. Glassey Approximate solutions to the Zakharov equations via finite differences , 1992 .

[21]  Foek T Hioe,et al.  Periodic solitary waves for two coupled nonlinear Klein–Gordon and Schrödinger equations , 2003 .

[22]  Mingliang Wang,et al.  The periodic wave solutions for the Klein–Gordon–Schrödinger equations , 2003 .

[23]  Zhi-zhong Sun,et al.  On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation , 1998 .

[24]  Luming Zhang,et al.  A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator , 2003, Appl. Math. Comput..

[25]  V. G. Makhankov,et al.  Dynamics of classical solitons (in non-integrable systems) , 1978 .

[26]  Xi-Qiang Liu,et al.  Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations , 2005, Appl. Math. Comput..

[27]  Xiang Xinmin,et al.  Spectral method for solving the system of equations of Schro¨dinger-Klein-Gordon field , 1988 .

[28]  Shusen Xie,et al.  Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation , 2009 .