Highly Accurate PDE-Based Morphology for General Structuring Elements

Modelling the morphological processes of dilation and erosion with convex structuring elements with partial differential equations (PDEs) allows for digital scalability and subpixel accuracy. However, numerical schemes suffer from blur by dissipative artifacts. In our paper we present a family of so-called flux-corrected transport (FCT) schemes that addresses this problem for arbitrary convex structuring elements. The main characteristics of the FCT-schemes are: (i) They keep edges very sharp during the morphological evolution process, and (ii) they feature a high rotational invariance. Numerical experiments with diamonds and ellipses as structuring elements show that FCT-schemes are superior to standard schemes in the field of PDE-based morphology.

[1]  M. Welk,et al.  Staircasing in semidiscrete stabilised inverse linear diffusion algorithms , 2007 .

[2]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[3]  Etienne Decencière,et al.  Mathematical Morphology: 40 Years On : Proceedings of the 7th International Symposium on Mathematical Morphology, April 18-20, 2005 (Computational Imaging and Vision) , 2005 .

[4]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[5]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[6]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[7]  J. Craggs Applied Mathematical Sciences , 1973 .

[8]  G. Matheron Random Sets and Integral Geometry , 1976 .

[9]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[10]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[11]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[12]  Luc Vincent,et al.  Mathematical morphology: The Hamilton-Jacobi connection , 1993, 1993 (4th) International Conference on Computer Vision.

[13]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[14]  Michael Breuß,et al.  A Shock-Capturing Algorithm for the Differential Equations of Dilation and Erosion , 2006, Journal of Mathematical Imaging and Vision.

[15]  Guillermo Sapiro,et al.  Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..

[16]  Petros Maragos,et al.  Evolution equations for continuous-scale morphology , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  Soille Pierre,et al.  Mathematical Morphology and Its Applications to Image and Signal Processing , 2011, Lecture Notes in Computer Science.

[18]  Chi-Wang Shu,et al.  Geometric shock-capturing ENO schemes for subpixel interpolation, computation, and curve evolution , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[19]  J. Boris,et al.  Flux-corrected transport. III. Minimal-error FCT algorithms , 1976 .

[20]  Laurent Najman,et al.  Mathematical Morphology : 40 Years On Proceedings of the 7 th International Symposium on , 2005 .

[21]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[22]  Rein van den Boomgaard,et al.  Numerical Solution Schemes for Continuous-Scale Morphology , 1999, Scale-Space.

[23]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[24]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[25]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[26]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[27]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[28]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .