Oxygen-deficient titanium dioxide as a functional host for lithium–sulfur batteries

Engineering oxygen vacancies in mesoporous TiO2 effectively enhanced its ability to trap polysulfides and simultaneously propelled the redox conversion of polysulfides.

[1]  Zhenyu Wang,et al.  Freestanding Mo2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries , 2019, Energy Storage Materials.

[2]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[3]  T. Chen,et al.  Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO2- x Nanoflakes for High-Performance Rechargeable Magnesium Batteries. , 2018, ACS nano.

[4]  B. Su,et al.  Coherent TiO2/BaTiO3 heterostructure as a functional reservoir and promoter for polysulfide intermediates. , 2018, Chemical communications.

[5]  Ning Qin,et al.  Carbon-bonded, oxygen-deficient TiO2 nanotubes with hybridized phases for superior Na-ion storage , 2018, Chemical Engineering Journal.

[6]  L. Mai,et al.  A 3D Nitrogen‐Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium–Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity , 2018, Advanced materials.

[7]  Qiang Zhang,et al.  Synchronous immobilization and conversion of polysulfides on a VO2–VN binary host targeting high sulfur load Li–S batteries , 2018 .

[8]  B. Ding,et al.  Ultrathin MXene Nanosheets Decorated with TiO2 Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li-S Batteries. , 2018, Small.

[9]  H. Yang,et al.  Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery , 2018, Nano Energy.

[10]  Hui Pan,et al.  Porous Organic Polymers for Polysulfide Trapping in Lithium–Sulfur Batteries , 2018 .

[11]  Shaojun Guo,et al.  Rational Design of MXene/1T‐2H MoS2‐C Nanohybrids for High‐Performance Lithium–Sulfur Batteries , 2018 .

[12]  J. Tu,et al.  Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for High‐Performance Lithium–Sulfur Batteries , 2018 .

[13]  H. Yang,et al.  Mechanism Investigation of High-Performance Li-Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals. , 2018, ACS nano.

[14]  Guanlun Guo,et al.  SnS2/TiO2 nanohybrids chemically bonded on nitrogen-doped graphene for lithium-sulfur batteries: synergy of vacancy defects and heterostructures. , 2018, Nanoscale.

[15]  C. Li,et al.  3D Ferroconcrete‐Like Aminated Carbon Nanotubes Network Anchoring Sulfur for Advanced Lithium–Sulfur Battery , 2018, Advanced Energy Materials.

[16]  F. Ciucci,et al.  Novel 2D Sb2S3 Nanosheet/CNT Coupling Layer for Exceptional Polysulfide Recycling Performance , 2018, Advanced Energy Materials.

[17]  X. Wu,et al.  Rational Design of Hierarchical SnO2/1T-MoS2 Nanoarray Electrode for Ultralong-Life Li–S Batteries , 2018, ACS Energy Letters.

[18]  J. Amici,et al.  Polysulfide Binding to Several Nanoscale Magnéli Phases Synthesized in Carbon for Long-Life Lithium-Sulfur Battery Cathodes. , 2018, ChemSusChem.

[19]  Yu‐Guo Guo,et al.  Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. , 2018, Journal of the American Chemical Society.

[20]  Haizhu Sun,et al.  High‐Performance and Low‐Temperature Lithium–Sulfur Batteries: Synergism of Thermodynamic and Kinetic Regulation , 2018 .

[21]  D. Muller,et al.  Dynamic Hosts for High-Performance Li–S Batteries Studied by Cryogenic Transmission Electron Microscopy and in Situ X-ray Diffraction , 2018 .

[22]  Shanqing Zhang,et al.  A robust network binder with dual functions of Cu2+ ions as ionic crosslinking and chemical binding agents for highly stable Li–S batteries , 2018 .

[23]  Jun Lu,et al.  Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries , 2018, Advanced materials.

[24]  O. Borodin,et al.  Layered LiTiO2 for the protection of Li2S cathodes against dissolution: mechanisms of the remarkable performance boost , 2018 .

[25]  Wei Chen,et al.  Designing Safe Electrolyte Systems for a High‐Stability Lithium–Sulfur Battery , 2018 .

[26]  F. Pan,et al.  Biomimetic Bipolar Microcapsules Derived from Staphylococcus aureus for Enhanced Properties of Lithium–Sulfur Battery Cathodes , 2018 .

[27]  K. Kang,et al.  Carbon nanomaterials for advanced lithium sulfur batteries , 2018 .

[28]  H. Fan,et al.  Updated Metal Compounds (MOFs, S, OH, N, C) Used as Cathode Materials for Lithium–Sulfur Batteries , 2018 .

[29]  Hui Pan,et al.  Elastic Sandwich‐Type rGO–VS2/S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium–Sulfur Batteries with High Energy Density , 2018 .

[30]  Minhuan Lan,et al.  Lithiophilic Cu‐CuO‐Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes , 2018, Advanced materials.

[31]  Seungho Yu,et al.  Design of structural and functional nanomaterials for lithium-sulfur batteries , 2018 .

[32]  Hong‐Jie Peng,et al.  A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable Lithium–Sulfur Batteries , 2018, Advanced materials.

[33]  G. Cao,et al.  Superior Pseudocapacitive Lithium-Ion Storage in Porous Vanadium Oxides@C Heterostructure Composite. , 2017, ACS applied materials & interfaces.

[34]  G. Cao,et al.  rGO/SnS2/TiO2 heterostructured composite with dual-confinement for enhanced lithium-ion storage , 2017 .

[35]  Wenjun Zhang,et al.  Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries. , 2017, Nano letters.

[36]  Jun Chen,et al.  Electrospun Thin-Walled CuCo2O4@C Nanotubes as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. , 2017, Nano letters.

[37]  P. Chu,et al.  Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries , 2017 .

[38]  Haizhu Sun,et al.  Oxygen-Deficient Titanium Dioxide Nanosheets as More Effective Polysulfide Reservoirs for Lithium-Sulfur Batteries. , 2017, Chemistry.

[39]  Xiaogang Zhang,et al.  A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries† †Electronic supplementary information (ESI) available: Detailed description of the experimental procedures and calculations. See DOI: 10.1039/c7sc01961k , 2017, Chemical science.

[40]  X. Tao,et al.  Efficient Activation of Li2S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries , 2017 .

[41]  Christopher W. Foster,et al.  Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors , 2017 .

[42]  J. Goodenough,et al.  Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li–S Battery , 2017 .

[43]  Yan Yu,et al.  Multichannel Porous TiO2 Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance. , 2017, Small.

[44]  Lifang Jiao,et al.  Controllable N-Doped CuCo2 O4 @C Film as a Self-Supported Anode for Ultrastable Sodium-Ion Batteries. , 2017, Small.

[45]  G. Cao,et al.  Walnut-like Porous Core/Shell TiO2 with Hybridized Phases Enabling Fast and Stable Lithium Storage. , 2017, ACS applied materials & interfaces.

[46]  Guangmin Zhou,et al.  Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries , 2017 .

[47]  Yufeng Zhao,et al.  Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives , 2017 .

[48]  Yayuan Liu,et al.  Catalytic oxidation of Li2S on the surface of metal sulfides for Li−S batteries , 2017, Proceedings of the National Academy of Sciences.

[49]  Xiaogang Zhang,et al.  Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur battery , 2017 .

[50]  Li-Jun Wan,et al.  Sulfur Encapsulated in Graphitic Carbon Nanocages for High‐Rate and Long‐Cycle Lithium–Sulfur Batteries , 2016, Advanced materials.

[51]  Yi Cui,et al.  Entrapment of Polysulfides by a Black‐Phosphorus‐Modified Separator for Lithium–Sulfur Batteries , 2016, Advanced materials.

[52]  Jun Chen,et al.  A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for High‐Performance Lithium–Sulfur Batteries with Unconventional Configurations , 2016, Advanced materials.

[53]  Linda F. Nazar,et al.  Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes , 2016, Nature Energy.

[54]  P. Chu,et al.  Mesoporous TiO2 Nanocrystals/Graphene as an Efficient Sulfur Host Material for High-Performance Lithium-Sulfur Batteries. , 2016, ACS applied materials & interfaces.

[55]  Wenjun Zhang,et al.  Porous TiO2 urchins for high performance Li-ion battery electrode: Facile synthesis, characterization and structural evolution , 2016 .

[56]  Guangmin Zhou,et al.  Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations , 2016 .

[57]  Rongming Wang,et al.  Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium–sulfur batteries , 2016 .

[58]  Xiaojing Zhao,et al.  From Hollow Carbon Spheres to N‐Doped Hollow Porous Carbon Bowls: Rational Design of Hollow Carbon Host for Li‐S Batteries , 2016 .

[59]  Xiaobo Ji,et al.  Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. , 2016, ACS applied materials & interfaces.

[60]  L. Nazar,et al.  In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes. , 2016, ACS nano.

[61]  Qiang Zhang,et al.  CaO‐Templated Growth of Hierarchical Porous Graphene for High‐Power Lithium–Sulfur Battery Applications , 2016 .

[62]  A. Manthiram,et al.  High‐Energy, High‐Rate, Lithium–Sulfur Batteries: Synergetic Effect of Hollow TiO2‐Webbed Carbon Nanotubes and a Dual Functional Carbon‐Paper Interlayer , 2016 .

[63]  Yi Cui,et al.  Strong sulfur binding with conducting Magnéli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries. , 2014, Nano letters.

[64]  Yi Cui,et al.  Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. , 2014, ACS Nano.

[65]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[66]  Wei Zhang,et al.  A Facile Method to Improve the Photocatalytic and Lithium‐Ion Rechargeable Battery Performance of TiO2 Nanocrystals , 2013 .

[67]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[68]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[69]  Arumugam Manthiram,et al.  Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer , 2012, Nature Communications.

[70]  Linda F. Nazar,et al.  Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery , 2012 .

[71]  Jun Liu,et al.  Optimization of mesoporous carbon structures for lithium–sulfur battery applications , 2011 .

[72]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[73]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[74]  M. Ben Yahia,et al.  Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations. , 2009, The Journal of chemical physics.