Causal relationships between gut microbiome, short-chain fatty acids and 1 metabolic diseases 2

[1]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[2]  Luke R. Thompson,et al.  Species-level functional profiling of metagenomes and metatranscriptomes , 2018, Nature Methods.

[3]  B. Neale,et al.  Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.

[4]  Chenhong Zhang,et al.  Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes , 2018, Science.

[5]  A. Kurilshikov,et al.  Environment dominates over host genetics in shaping human gut microbiota , 2018, Nature.

[6]  Evgeni Levin,et al.  Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. , 2017, Cell metabolism.

[7]  Hongwei Zhou,et al.  Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in healthy young population , 2017, Scientific Reports.

[8]  Tanya M. Teslovich,et al.  An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans , 2017, Diabetes.

[9]  B. Yandell,et al.  Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. , 2017, Cell reports.

[10]  E. Chambers,et al.  The diet‐derived short chain fatty acid propionate improves beta‐cell function in humans and stimulates insulin secretion from human islets in vitro , 2017, Diabetes, obesity & metabolism.

[11]  H. Flint,et al.  Formation of propionate and butyrate by the human colonic microbiota. , 2017, Environmental microbiology.

[12]  R. Xavier,et al.  A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans , 2016, Cell.

[13]  C. Huttenhower,et al.  Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity , 2016, Cell.

[14]  A. Paterson,et al.  Association of host genome with intestinal microbial composition in a large healthy cohort , 2016, Nature Genetics.

[15]  T. Vatanen,et al.  The effect of host genetics on the gut microbiome , 2016, Nature Genetics.

[16]  Cathie Sudlow,et al.  Algorithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank , 2016, PloS one.

[17]  Tommi Vatanen,et al.  Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans , 2016, Cell.

[18]  Emily R. Davenport,et al.  Genetic Determinants of the Gut Microbiome in UK Twins. , 2016, Cell host & microbe.

[19]  Morris A. Swertz,et al.  Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity , 2016, Science.

[20]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[21]  A. Margolles,et al.  Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health , 2016, Front. Microbiol..

[22]  A. Zhernakova,et al.  Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics , 2015, BMJ Open.

[23]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[24]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[25]  Tamara S. Roman,et al.  New genetic loci link adipose and insulin biology to body fat distribution , 2014, Nature.

[26]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[27]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[28]  Jimmy D Bell,et al.  Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults , 2014, Gut.

[29]  Jingyuan Fu,et al.  Pleiotropic Effects of Lipid Genes on Plasma Glucose, HbA1c, and HOMA-IR Levels , 2014, Diabetes.

[30]  Mark I. McCarthy,et al.  A Central Role for GRB10 in Regulation of Islet Function in Man , 2014, PLoS genetics.

[31]  A. Butterworth,et al.  Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data , 2013, Genetic epidemiology.

[32]  Barbara M. Bakker,et al.  The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism , 2013, Journal of Lipid Research.

[33]  Zhuye Jie,et al.  Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance , 2013, PloS one.

[34]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[35]  M. Garcia-Conesa,et al.  Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. , 2012, Journal of separation science.

[36]  Claude Bouchard,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[37]  G. Rücker,et al.  Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. , 2011, Biostatistics.

[38]  Christian Gieger,et al.  Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways , 2010, Diabetes.

[39]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[40]  S. Sørensen,et al.  Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults , 2010, PloS one.

[41]  Alex Doney,et al.  Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge , 2010, Nature Genetics.

[42]  A. Schwiertz,et al.  Microbiota and SCFA in Lean and Overweight Healthy Subjects , 2010, Obesity.

[43]  Luying Peng,et al.  Effects of Butyrate on Intestinal Barrier Function in a Caco-2 Cell Monolayer Model of Intestinal Barrier , 2007, Pediatric Research.

[44]  F. Bäckhed,et al.  Obesity alters gut microbial ecology. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Flint,et al.  The microbiology of butyrate formation in the human colon. , 2002, FEMS microbiology letters.

[46]  Brazilian Keynesian Review EDITORIAL SUMMARY , 1874, The Canadian Entomologist.