Large-scale FMO-MP3 calculations on the surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA)

Abstract Two proteins on the influenza virus surface have been well known. One is hemagglutinin (HA) associated with the infection to cells. The fragment molecular orbital (FMO) calculations were performed on a complex consisting of HA trimer and two Fab-fragments at the third-order Moller–Plesset perturbation (MP3) level. The numbers of residues and 6-31G basis functions were 2351 and 201276, and thus a massively parallel–vector computer was utilized to accelerate the processing. This FMO-MP3 job was completed in 5.8 h with 1024 processors. Another protein is neuraminidase (NA) involved in the escape from infected cells. The FMO-MP3 calculation was also applied to analyze the interactions between oseltamivir and surrounding residues in pharmacophore.

[1]  Kaori Fukuzawa,et al.  A configuration analysis for fragment interaction , 2005 .

[2]  Kaori Fukuzawa,et al.  Possibility of mutation prediction of influenza hemagglutinin by combination of hemadsorption experiment and quantum chemical calculation for antibody binding. , 2009, The journal of physical chemistry. B.

[3]  Emily A. Carter,et al.  Pseudospectral Møller-Plesset perturbation theory through third order , 1994 .

[4]  Svein Saebo,et al.  Avoiding the integral storage bottleneck in LCAO calculations of electron correlation , 1989 .

[5]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[6]  Takeshi Ishikawa,et al.  Theoretical study of the prion protein based on the fragment molecular orbital method , 2009, J. Comput. Chem..

[7]  Takeshi Ishikawa,et al.  Interaction Analysis of the Native Structure of Prion Protein with Quantum Chemical Calculations. , 2010, Journal of chemical theory and computation.

[8]  J. Skehel,et al.  An antibody that prevents the hemagglutinin low pH fusogenic transition. , 2002, Virology.

[9]  R. Bartlett,et al.  Many‐body perturbation theory applied to electron pair correlation energies. I. Closed‐shell first‐row diatomic hydrides , 1976 .

[10]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[11]  David J. Stevens,et al.  The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design , 2006, Nature.

[12]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[13]  J. Taylor,et al.  Calculation of the intensities of the vibrational components of the ammonia ultra-violet absorption bands , 1970 .

[14]  J. Magano Synthetic approaches to the neuraminidase inhibitors zanamivir (Relenza) and oseltamivir phosphate (Tamiflu) for the treatment of influenza. , 2009, Chemical reviews.

[15]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[16]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[17]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[18]  Michael J. Frisch,et al.  Toward a systematic molecular orbital theory for excited states , 1992 .

[19]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[20]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[21]  Á. Szabados Theoretical interpretation of Grimme's spin-component-scaled second order Møller-Plesset theory. , 2006, The Journal of chemical physics.

[22]  Stephen Wilson,et al.  Algebraic approximation in many-body perturbation theory , 1976 .

[23]  J. Stephen Binkley,et al.  Theoretical models incorporating electron correlation , 2009 .

[24]  D. M. Ryan,et al.  Rational design of potent sialidase-based inhibitors of influenza virus replication , 1993, Nature.

[25]  Alan J. Hay,et al.  Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants , 2008, Nature.

[26]  Stefan Grimme,et al.  Improved third‐order Møller–Plesset perturbation theory , 2003, J. Comput. Chem..

[27]  E. Nobusawa,et al.  Accumulation of Amino Acid Substitutions Promotes Irreversible Structural Changes in the Hemagglutinin of Human Influenza AH3 Virus during Evolution , 2005, Journal of Virology.

[28]  Junwei Zhang,et al.  VISCANA: Visualized Cluster Analysis of Protein-Ligand Interaction Based on the ab Initio Fragment Molecular Orbital Method for Virtual Ligand Screening , 2006, J. Chem. Inf. Model..

[29]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[30]  Kazuo Kitaura,et al.  Pair interaction energy decomposition analysis , 2007, J. Comput. Chem..

[31]  Umpei Nagashima,et al.  A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme , 2004 .

[32]  S. Saebo Strategies for electron correlation calculations on large molecular systems , 1992 .

[33]  M. Urban,et al.  Applications of perturbation theory to the chemical problems , 1979 .

[34]  Kaori Fukuzawa,et al.  Large scale FMO-MP2 calculations on a massively parallel-vector computer , 2008 .

[35]  Peter R. Taylor,et al.  Integral processing in beyond-Hartree-Fock calculations , 1987 .

[36]  Jirí Cerný,et al.  Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[38]  Yuji Mochizuki,et al.  Large scale MP2 calculations with fragment molecular orbital scheme , 2004 .

[39]  Kazuya Ishimura,et al.  MPI/OpenMP Hybrid Parallel Algorithm for Hartree−Fock Calculations , 2010 .

[40]  A. Douglas,et al.  The evolution of human influenza viruses. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  Thanyada Rungrotmongkol,et al.  Dynamic Behavior of Avian Influenza A Virus Neuraminidase Subtype H5N1 in Complex with Oseltamivir, Zanamivir, Peramivir, and Their Phosphonate Analogues , 2009, J. Chem. Inf. Model..

[42]  E. Holmes,et al.  The evolution of epidemic influenza , 2007, Nature Reviews Genetics.

[43]  Kalju Kahn,et al.  Convergence of third order correlation energy in atoms and molecules , 2007, J. Comput. Chem..

[44]  Frederick R Manby,et al.  Multicore Parallelization of Kohn-Sham Theory. , 2009, Journal of chemical theory and computation.

[45]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[46]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[47]  Wilfried Meyer,et al.  Theory of self‐consistent electron pairs. An iterative method for correlated many‐electron wavefunctions , 1976 .

[48]  Yuichi Inadomi,et al.  Fragment molecular orbital study of the electronic excitations in the photosynthetic reaction center of Blastochloris viridis , 2009, J. Comput. Chem..