Relationships between unit-cell parameters and composition for rock-forming minerals on Earth, Mars, and other extraterrestrial bodies

Abstract Mathematical relationships between unit-cell parameters and chemical composition were developed for selected mineral phases observed with the CheMin X-ray diffractometer onboard the Curiosity rover in Gale crater. This study presents algorithms for estimating the chemical composition of phases based solely on X-ray diffraction data. The mineral systems include plagioclase, alkali feldspar, Mg-Fe-Ca C2/c clinopyroxene, Mg-Fe-Ca P21/c clinopyroxene, Mg-Fe-Ca orthopyroxene, Mg-Fe olivine, magnetite, and other selected spinel oxides, and alunite-jarosite. These methods assume compositions of Na-Ca for plagioclase, K-Na for alkali feldspar, Mg-Fe-Ca for pyroxene, and Mg-Fe for olivine; however, some other minor elements may occur and their impact on measured unit-cell parameters is discussed. These crystal-chemical algorithms can be applied to material of any origin, whether that origin is Earth, Mars, an extraterrestrial body, or a laboratory.

[1]  D. Ming,et al.  Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars , 2018, American Mineralogist.

[2]  Richard V. Morris,et al.  Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars , 2017 .

[3]  D. Ming,et al.  Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars , 2017 .

[4]  Linda C. Kah,et al.  Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars , 2017 .

[5]  H. Leroux,et al.  Regolith breccia Northwest Africa 7533: Mineralogy and petrology with implications for early Mars , 2017 .

[6]  Trevor G. Graff,et al.  Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater , 2016, Proceedings of the National Academy of Sciences.

[7]  F. McCubbin,et al.  Rb‐Sr and Sm‐Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034 , 2016 .

[8]  D. Ming,et al.  Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X‐ray diffraction of the Windjana sample (Kimberley area, Gale Crater) , 2016, Journal of geophysical research. Planets.

[9]  Robert T. Downs,et al.  The power of databases: The RRUFF project , 2016 .

[10]  F. McCubbin,et al.  Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust , 2015 .

[11]  D. Ming,et al.  The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars , 2015, The American mineralogist.

[12]  R. Korotev,et al.  Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475 , 2015 .

[13]  R. Morris,et al.  Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater , 2014 .

[14]  D. Ming,et al.  The first X-ray diffraction measurements on Mars , 2014, IUCrJ.

[15]  R. V. Morris,et al.  Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[16]  R. Angel,et al.  Structural controls on the anisotropy of tetrahedral frameworks: the example of monoclinic feldspars , 2013 .

[17]  A. Christy,et al.  What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Looking for jarosite on Mars: The low-temperature crystal structure of jarosite , 2013 .

[18]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[19]  R. V. Morris,et al.  Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow , 2013, Science.

[20]  J. Papike,et al.  Silicate mineralogy of martian meteorites , 2009 .

[21]  D. Ming,et al.  Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .

[22]  D. Ming,et al.  Hydrothermal synthesis of hematite spherules and jarosite: Implications for diagenesis and hematite spherule formation in sulfate outcrops at Meridiani Planum, Mars , 2008 .

[23]  Scort,et al.  Naturally occurring ferric iron sanidine from the Leucite Hills lamproite , 2007 .

[24]  J. J. Pepmn Structural and chemical variations in pyroxenes , 2007 .

[25]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[26]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[27]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[28]  Everett L. Shock,et al.  Formation of jarosite‐bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars , 2004 .

[29]  S. Merlino,et al.  Synthesis and crystal structure of low ferrialuminosilicate sanidine , 2003 .

[30]  J. Beckett,et al.  The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions , 1999 .

[31]  R. Angel,et al.  Structure, ordering and cation interactions in Ca-free P21/c clinopyroxenes , 1998 .

[32]  S. Kuehner,et al.  Naturally occurring ferric iron sanidine from the Leucite Hills lamproite , 1996 .

[33]  K. Linthout,et al.  Ferrian high sanidine in a lamproite from Cancarix, Spain , 1993, Mineralogical Magazine.

[34]  R. Angel,et al.  Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars , 1990 .

[35]  H. Kroll CHAPTER 4. LATTICE PARAMETERS and DETERMINATIVE METHODS for PLAGIOCLASE and TERNARY FELDSPARS , 1983 .

[36]  P. Ribbe,et al.  CHAPTER 3. LATTICE PARAMETERS, COMPOSITION and Al,Si ORDER in ALKALI FELDSPARS , 1983 .

[37]  J. Papike,et al.  Structural and chemical variations in pyroxenes , 1981 .

[38]  P. Robinson The composition space of terrestrial pyroxenes; internal and external limits , 1980 .

[39]  J. Papike Pyroxene mineralogy of the Moon and meteorites , 1980 .

[40]  W. Taylor,et al.  The crystal structures of nine K feldspars from the Adamello Massif (Northern Italy) , 1978 .

[41]  A. C. Turnock,et al.  Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes , 1973 .

[42]  G. W. Fisher,et al.  Cell dimensions and X-ray determinative curve for synthetic Mg-Fe olivines , 1969 .

[43]  J. Nolan Physical properties of synthetic and natural pyroxenes in the system diopside–hedenbergite–acmite , 1969, Mineralogical Magazine.

[44]  I. C. Jahanbagloo X-ray diffraction study of olivine solid solution series , 1969 .

[45]  S. J. Louisnathan Cell Dimensions of Olivine , 1968 .

[46]  Y. Syono,et al.  Unit cell dimensions of some synthetic olivine group solid solutions , 1968 .