Classical and quantum routes to linear magnetoresistance.

The hallmark of materials science is the ability to tailor the microstructure of a given material to provide a desired response. Carbon mixed with iron provides the steel of buildings and bridges; impurities sprinkled in silicon single crystals form the raw materials of the electronics revolution; pinning centres in superconductors let them become powerful magnets. Here, we show that either adding a few parts per million of the proper chemical impurities to indium antimonide, a well-known semiconductor, or redesigning the material's structure on the micrometre scale, can transform its response to an applied magnetic field. The former approach is purely quantum mechanical; the latter a classical outgrowth of disorder, turned to advantage. In both cases, the magnetoresistive response--at the heart of magnetic sensor technology--can be converted to a simple, large and linear function of field that does not saturate. Harnessing the effects of disorder has the further advantage of extending the useful applications range of such a magnetic sensor to very high temperatures by circumventing the usual limitations imposed by phonon scattering.

[1]  Hines,et al.  Enhanced Room-Temperature Geometric Magnetoresistance in Inhomogeneous Narrow-Gap Semiconductors. , 2000, Science.

[2]  V. Fal’ko,et al.  Random resistor network model of minimal conductivity in graphene. , 2007, Physical review letters.

[3]  P. Littlewood,et al.  Classical magnetotransport of inhomogeneous conductors , 2005, cond-mat/0508229.

[4]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[5]  Joseph P. Heremans Solid state magnetic field sensors and applications , 1993 .

[6]  C. Herring Effect of Random Inhomogeneities on Electrical and Galvanomagnetic Measurements , 1960 .

[7]  A. Abrikosov,et al.  Quantum linear magnetoresistance , 2000 .

[8]  H. Fritzsche,et al.  Electrical Properties of p-Type Indium Antimonide at Low Temperatures , 1955 .

[9]  P. B. Littlewood,et al.  Non-saturating magnetoresistance in heavily disordered semiconductors , 2003, Nature.

[10]  M. Parish,et al.  Nonsaturating magnetoresistance of inhomogeneous conductors: Comparison of experiment and simulation , 2007, 0705.0393.

[11]  Chien,et al.  Large magnetoresistance of electrodeposited single-crystal bismuth thin films , 1999, Science.

[12]  Vladimir Fal'ko,et al.  The Focusing of Electron Flow and a Veselago Lens in Graphene p-n Junctions , 2007, Science.

[13]  T. F. Rosenbaum,et al.  Large magnetoresistance in non-magnetic silver chalcogenides , 1997, Nature.

[14]  M. Saboungi,et al.  Band-gap tuning and linear magnetoresistance in the silver chalcogenides. , 2002, Physical review letters.

[15]  Schultz,et al.  Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. , 1993, Physical review letters.

[16]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[17]  A. Abrikosov Galvanomagnetic Phenomena in Metals in the Quantum Limit , 1969 .

[18]  S. V. Molnár,et al.  Electron Localization in a Magnetic Semiconductor: Gd 3-x ν x S 4 , 1983 .

[19]  R. Cotellessa Physics of III-V compounds , 1965 .

[20]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[21]  J. Betts,et al.  Current jets, disorder, and linear magnetoresistance in the silver chalcogenides. , 2005, Physical review letters.

[22]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[23]  T. Geballe,et al.  Hall Effect and Conductivity of InSb , 1955 .

[24]  P. Kapitza The Study of the Specific Resistance of Bismuth Crystals and Its Change in Strong Magnetic Fields and Some Allied Problems , 1928 .

[25]  H. Frederikse,et al.  Galvanomagnetic Effects in n-Type Indium Antimonide , 1957 .

[26]  J. Betts,et al.  Megagauss sensors , 2002, Nature.

[27]  A. Hamzić,et al.  On the optimization of the large magnetoresistance of Ag2Se , 1999 .

[28]  R. G. Breckenridge,et al.  Electrical and Optical Properties of Intermetallic Compounds. I. Indium Antimonide , 1954 .

[29]  J. L. Olsen Electron Transport in Metals , 1962 .

[30]  H. Ibach Comparison of Experiment and Simulation , 1991 .