A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and decay prediction

We put forth a long short-term memory (LSTM) nudging framework for the enhancement of reduced order models (ROMs) of fluid flows utilizing noisy measurements for air traffic improvements. Toward emerging applications of digital twins in aviation, the proposed approach allows for constructing a realtime predictive tool for wake-vortex transport and decay systems. We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements. Moreover, conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from imperfection and solution instabilities, especially for advection-dominated flows with slow decay in the Kolmogorov width. In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework. We illustrate our concept by solving a two-dimensional vorticity transport equation. We investigate the effects of measurements noise and state estimate uncertainty on the performance of the LSTM-N behavior. We also demonstrate that it can sufficiently handle different levels of temporal and spatial measurement sparsity, and offer a huge potential in developing next-generation digital twin technologies.

[1]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[2]  Pavel B. Bochev,et al.  LEAST SQUARES FINITE ELEMENT METHODS FOR VISCOUS , INCOMPRESSIBLE FLOWS , 2006 .

[3]  B. R. Noack,et al.  Optimal nonlinear eddy viscosity in Galerkin models of turbulent flows , 2014, Journal of Fluid Mechanics.

[4]  Thomas Gerz,et al.  Commercial aircraft wake vortices , 2002 .

[5]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[6]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[7]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[8]  V. Sankaran,et al.  Exploration of POD-galerkin techniques for developing reduced order models of the euler equations , 2016 .

[9]  Traian Iliescu,et al.  An Evolve-Filter-Relax Stabilized Reduced Order Stochastic Collocation Method for the Time-Dependent Navier-Stokes Equations , 2019, SIAM/ASA J. Uncertain. Quantification.

[10]  Omer San,et al.  A dynamic closure modeling framework for model order reduction of geophysical flows , 2019, Physics of Fluids.

[11]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[12]  L. Sirovich Turbulence and the dynamics of coherent structures. II. Symmetries and transformations , 1987 .

[13]  Laurent Bricteux,et al.  Simulation of LIDAR-based aircraft wake vortex detection using a bi-gaussian spectral model , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[14]  L. Biferale,et al.  Synchronization to Big Data: Nudging the Navier-Stokes Equations for Data Assimilation of Turbulent Flows , 2019, Physical Review X.

[15]  Fred H. Proctor,et al.  Wake Vortex Transport and Decay in Ground Effect: Vortex Linking with the Ground , 2000 .

[16]  Omer San,et al.  Data-driven recovery of hidden physics in reduced order modeling of fluid flows , 2020, Physics of Fluids.

[17]  Earl H. Dowell,et al.  Stabilization of projection-based reduced order models of the Navier–Stokes , 2012 .

[18]  Harbir Antil,et al.  Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction , 2015, J. Comput. Phys..

[19]  Traian Iliescu,et al.  Data-Driven Filtered Reduced Order Modeling of Fluid Flows , 2017, SIAM J. Sci. Comput..

[20]  Zhu Wang,et al.  Two-level discretizations of nonlinear closure models for proper orthogonal decomposition , 2011, J. Comput. Phys..

[21]  Vishwas Rao,et al.  Machine-Learning for Nonintrusive Model Order Reduction of the Parametric Inviscid Transonic Flow past an airfoil. , 2020 .

[22]  Zhu Wang,et al.  Approximate Deconvolution Reduced Order Modeling , 2015, 1510.02726.

[23]  S. Pawar,et al.  A deep learning enabler for nonintrusive reduced order modeling of fluid flows , 2019, Physics of Fluids.

[24]  M. Wei,et al.  A hybrid stabilization approach for reduced‐order models of compressible flows with shock‐vortex interaction , 2019, International Journal for Numerical Methods in Engineering.

[25]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[26]  Robert Luckner,et al.  HAZARD CRITERIA FOR WAKE VORTEX ENCOUNTERS DURING APPROACH , 2004 .

[27]  Shady E. Ahmed,et al.  Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning , 2020, 2005.14246.

[28]  Richard A. Anthes,et al.  Data Assimilation and Initialization of Hurricane Prediction Models , 1974 .

[29]  Petros Koumoutsakos,et al.  Machine Learning for Fluid Mechanics , 2019, Annual Review of Fluid Mechanics.

[30]  C. Cesnik,et al.  Petrov-Galerkin Projection-Based Model Reduction with an Optimized Test Space , 2020 .

[31]  Bernd R. Noack,et al.  Identification strategies for model-based control , 2013 .

[32]  R. S. Bell,et al.  The Meteorological Office analysis correction data assimilation scheme , 1991 .

[33]  Thomas Gerz,et al.  Wake Vortices in Convective Boundary Layer and Their Influence on Following Aircraft , 2000 .

[34]  C. Kees,et al.  Evaluation of Galerkin and Petrov–Galerkin model reduction for finite element approximations of the shallow water equations , 2017 .

[35]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[36]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[37]  Omer San,et al.  Reduced order modeling of fluid flows: Machine learning, Kolmogorov barrier, closure modeling, and partitioning (Invited) , 2020 .

[38]  Virginia Kalb,et al.  An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models , 2007 .

[39]  Philippe R. Spalart,et al.  AIRPLANE TRAILING VORTICES , 1998 .

[40]  Youngsoo Choi,et al.  Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction , 2017, SIAM J. Sci. Comput..

[41]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[42]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[43]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[44]  Cheng Huang,et al.  Closure of Reacting Flow Reduced-Order Models via the Adjoint Petrov-Galerkin Method , 2019, AIAA Aviation 2019 Forum.

[45]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[46]  Yasser Aboelkassem,et al.  Viscous dissipation of Rankine vortex profile in zero meridional flow , 2005 .

[47]  Omer San,et al.  Digital Twin: Values, Challenges and Enablers From a Modeling Perspective , 2019, IEEE Access.

[48]  M. Wei,et al.  Multi-Stage Stabilization of ROMs in Strongly Nonlinear Systems , 2020, AIAA AVIATION 2020 FORUM.

[49]  Traian Iliescu,et al.  A New Closure Strategy for Proper Orthogonal Decomposition Reduced-Order Models , 2012 .

[50]  Zhu Wang,et al.  Numerical analysis of the Leray reduced order model , 2017, J. Comput. Appl. Math..

[51]  Mandar V. Tabib,et al.  Analyzing complex wake-terrain interactions and its implications on wind-farm performance. , 2016 .

[52]  Omer San,et al.  Long short-term memory embedded nudging schemes for nonlinear data assimilation of geophysical flows , 2020 .

[53]  Kai Fukami,et al.  Probabilistic neural networks for fluid flow model-order reduction and data recovery , 2020, 2005.04271.

[54]  Christian Breitsamter,et al.  Wake vortex characteristics of transport aircraft , 2011 .

[55]  Suraj Pawar,et al.  An Evolve-Then-Correct Reduced Order Model for Hidden Fluid Dynamics , 2019, Mathematics.

[56]  Frank Holzäpfel,et al.  Numerical Optimization of Plate-Line Design for Enhanced Wake-Vortex Decay , 2017 .

[57]  Traian Iliescu,et al.  A long short-term memory embedding for hybrid uplifted reduced order models , 2019, Physica A: Statistical Mechanics and its Applications.

[58]  G. Rozza,et al.  POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations , 2016 .

[59]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[60]  Jian Yu,et al.  Flowfield Reconstruction Method Using Artificial Neural Network , 2019, AIAA Journal.

[61]  J. Blum,et al.  Back and forth nudging algorithm for data assimilation problems , 2005 .

[62]  François Garnier,et al.  Analysis of wake vortex decay mechanisms in the atmosphere , 2003 .

[63]  Traian Iliescu,et al.  Variational multiscale proper orthogonal decomposition: Navier‐stokes equations , 2012, 1210.7389.

[64]  Sebastian Grimberg,et al.  On the stability of projection-based model order reduction for convection-dominated laminar and turbulent flows , 2020, J. Comput. Phys..

[65]  Omer San,et al.  An artificial neural network framework for reduced order modeling of transient flows , 2018, Commun. Nonlinear Sci. Numer. Simul..

[66]  Traian Iliescu,et al.  A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation , 2014, Adv. Comput. Math..

[67]  Fred H. Proctor,et al.  The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System , 1998 .

[68]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[69]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[70]  He Zhang,et al.  Digital Twin in Industry: State-of-the-Art , 2019, IEEE Transactions on Industrial Informatics.

[71]  R. Ganguli,et al.  The digital twin of discrete dynamic systems: Initial approaches and future challenges , 2020, Applied Mathematical Modelling.

[72]  M. P. Brenner,et al.  Perspective on machine learning for advancing fluid mechanics , 2019, Physical Review Fluids.

[73]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[74]  S. Lakshmivarahan,et al.  Nudging Methods: A Critical Overview , 2013 .

[75]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[76]  Karthik Duraisamy,et al.  Modal Analysis of Fluid Flows: Applications and Outlook , 2019, AIAA Journal.

[77]  A. Piacentini,et al.  Determination of optimal nudging coefficients , 2003 .

[78]  H. P. Lee,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY , 2002 .

[79]  José M. Vega,et al.  Reduced order models based on local POD plus Galerkin projection , 2010, J. Comput. Phys..

[80]  Ionel M. Navon,et al.  Non-linear Petrov-Galerkin methods for reduced order modelling of the Navier-Stokes equations using a mixed finite element pair , 2013 .

[81]  Adil Rasheed,et al.  Wake modeling in complex terrain using a hybrid Eulerian-Lagrangian Split Solver , 2016 .

[82]  Don Jacob,et al.  Review of Idealized Aircraft Wake Vortex Models , 2014 .

[83]  Imran Akhtar,et al.  Nonlinear closure modeling in reduced order models for turbulent flows: a dynamical system approach , 2020, Nonlinear Dynamics.

[84]  J. Nathan Kutz,et al.  Deep learning in fluid dynamics , 2017, Journal of Fluid Mechanics.

[85]  D. Rempfer,et al.  On Low-Dimensional Galerkin Models for Fluid Flow , 2000 .

[86]  K. Duraisamy,et al.  The Adjoint Petrov–Galerkin method for non-linear model reduction , 2018, Computer Methods in Applied Mechanics and Engineering.

[87]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[88]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[89]  Lili Lei,et al.  Nudging, Ensemble, and Nudging Ensembles for Data Assimilation in the Presence of Model Error , 2015 .

[90]  V. Rossow Convective merging of vortex cores in lift-generated wakes , 1976 .

[91]  Haotian Gao,et al.  POD-Galerkin Projection ROM for the Flow Passing A Rotating Elliptical Airfoil , 2020, AIAA AVIATION 2020 FORUM.

[92]  Guannan Zhang,et al.  Non-Intrusive Inference Reduced Order Model for Fluids Using Deep Multistep Neural Network , 2019 .

[93]  Matthew F. Barone,et al.  On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far‐field boundary treatment , 2010 .

[94]  D. Stauffer,et al.  Optimal determination of nudging coefficients using the adjoint equations , 1993 .

[95]  Eike Stumpf,et al.  Strategies for Circulation Evaluation of Aircraft Wake Vortices Measured by Lidar , 2003 .

[96]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[97]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[98]  John Derber,et al.  A Global Oceanic Data Assimilation System , 1989 .

[99]  Traian Iliescu,et al.  Proper orthogonal decomposition closure models for fluid flows: Burgers equation , 2013, 1308.3276.

[100]  M. Mohebujjaman,et al.  Physically constrained data‐driven correction for reduced‐order modeling of fluid flows , 2018, International Journal for Numerical Methods in Fluids.

[101]  Prasanna Balaprakash,et al.  Time-series learning of latent-space dynamics for reduced-order model closure , 2019, Physica D: Nonlinear Phenomena.

[103]  M. Wei,et al.  Impact of Symmetrization on the Robustness of POD-Galerkin ROMs for Compressible Flows , 2020 .

[104]  Vassilios Theofilis,et al.  Modal Analysis of Fluid Flows: An Overview , 2017, 1702.01453.

[105]  James N. Hallock,et al.  A review of recent wake vortex research for increasing airport capacity , 2018 .

[106]  Juan Du,et al.  Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods , 2013, J. Comput. Phys..