The biological Maxwell's demons: exploring ideas about the information processing in biological systems

This work is based on ideas supported by some of the biologists who discovered foundational facts of twentieth-century biology and who argued that Maxwell's demons are physically implemented by biological devices. In particular, JBS Haldane first, and later J. Monod, A, Lwoff and F. Jacob argued that enzymes and molecular receptors implemented Maxwell's demons that operate in systems far removed from thermodynamic equilibrium and that were responsible for creating the biological order. Later, these ideas were extended to other biological processes. In this article, we argue that these biological Maxwell's demons (BMD) are systems that have information processing capabilities that allow them to select their inputs and direct their outputs toward targets. In this context, we propose the idea that these BMD are information catalysts in which the processed information has broad thermodynamic consequences.

[1]  Terrence W. Deacon,et al.  Shannon – Boltzmann – Darwin: Redefining information (Part I) , 2007 .

[2]  Jacques Ninio ARCHITECTURE FOR A REPLICATIVE MEMORY , 1996 .

[3]  W. Ashby,et al.  The identification of many-dimensional relations , 1972 .

[4]  L. Brillouin Life, thermodynamics, and cybernetics. , 1949, American scientist.

[5]  H. Pattee How Does a Molecule Become a Message , 2012 .

[6]  Interface Focus , 2022 .

[7]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[8]  Leo Szilard The collected works of Leo Szilard , 1972 .

[9]  G M Edelman,et al.  Selective networks capable of representative transformations, limited generalizations, and associative memory. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Howard Hunt Pattee,et al.  The Physical Basis and Origin of Hierarchical Control , 2012 .

[11]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Juan C. Valle-Lisboa,et al.  Dynamic searching in the brain , 2009, Cognitive Neurodynamics.

[13]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[14]  L. Brillouin Maxwell's Demon Cannot Operate: Information and Entropy. I , 1951 .

[15]  J. Hopfield Physics, Computation, and Why Biology Looks so Different , 1994 .

[16]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[17]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[18]  L. Szilard,et al.  ON MEMORY AND RECALL. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Pascal,et al.  The Logic of Life , 2016, Origins of Life and Evolution of Biospheres.

[20]  J. Changeux,et al.  Computational models of association cortex , 2000, Current Opinion in Neurobiology.

[21]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[22]  E. Lutz,et al.  Information: From Maxwell’s demon to Landauer’s eraser , 2015 .

[23]  J. Monod,et al.  Bacterial permeases. , 1957, Bacteriological reviews.

[24]  Francis Bailly,et al.  BIOLOGICAL ORGANIZATION AND ANTI-ENTROPY , 2009 .

[25]  Gloria M. Sheynkman,et al.  Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing , 2016, Cell.

[26]  Artemy Kolchinsky,et al.  Semantic information, autonomous agency and non-equilibrium statistical physics , 2018, Interface Focus.

[27]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[28]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[29]  P. Gennes,et al.  Introduction to polymer dynamics , 1990 .

[30]  Stuart A. Kauffman,et al.  Answering Schrödinger’s “What Is Life?” , 2020, Entropy.

[31]  Effet des analogues de la L-thréonine et de la L-isoleucine sur la L-thréonine désaminase , 1962 .

[32]  E. Schoffeniels [Biological order]. , 1986, Archives internationales de physiologie et de biochimie.

[33]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[34]  John J Hopfield,et al.  Neurodynamics of mental exploration , 2009, Proceedings of the National Academy of Sciences.

[35]  M. N. Bera,et al.  Thermodynamics from Information , 2018, 1805.10282.

[36]  Andrew F. Rex Maxwell’s Demon , 1996 .

[37]  G. Edelman Cell adhesion molecules. , 1983, Science.

[38]  Nicky J Welton,et al.  Value of Information , 2015, Medical decision making : an international journal of the Society for Medical Decision Making.

[39]  Eduardo Mizraji,et al.  Vector Logic: A Natural Algebraic Representation of the Fundamental Logical Gates , 2008, J. Log. Comput..

[40]  J Wyman,et al.  The turning wheel: a study in steady states. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E Mizraji,et al.  Context-dependent associations in linear distributed memories. , 1989, Bulletin of mathematical biology.

[42]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[43]  E Mizraji,et al.  Errors in the Stereoscopic Separation of Surfaces Represented with Regular Textures , 1985, Perception.

[44]  W. Porod,et al.  Dissipation in Computation , 1984 .

[45]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[46]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[47]  R. M. Siegel,et al.  Foundations of Cognitive Science , 1990, Journal of Cognitive Neuroscience.

[48]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[49]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[50]  A. T. Winfree,et al.  The prehistory of the Belousov-Zhabotinsky oscillator , 1984 .

[51]  Ronaldo Vigo,et al.  Complexity over Uncertainty in Generalized Representational Information Theory (GRIT): A Structure-Sensitive General Theory of Information , 2012, Inf..

[52]  Andrew F. Rex,et al.  Maxwell's Demon, Entropy, Information, Computing , 1990 .

[53]  A. Novick,et al.  Experiments with the Chemostat on spontaneous mutations of bacteria. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Gennes Organization of a primitive memory: olfaction. , 2004 .

[55]  Maël Montévil Entropies and the Anthropocene crisis , 2021, AI & SOCIETY.

[56]  B. Bornkessel [Cell adhesion molecules]. , 1997, Medizinische Monatsschrift fur Pharmazeuten.

[57]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[58]  W. Ross Ashby Systems and Information , 1963, IEEE Transactions on Military Electronics.

[59]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[60]  Ronaldo Vigo,et al.  Representational information: a new general notion and measure of information , 2011, Information Sciences.